Dynamic Interaction: A New Concept of Confinement
Keywords:
classical dynamics, axisymmetric systems, spontaneous intrinsic rotation
Abstract
We propose new dynamic hypotheses to enhance our understanding of the behavior of the plasma in the reactor. In doing so, we put forward a profound revision of classical dynamics. After over thirty years studying rotational dynamics, we propose a new theory of dynamic interactions to better interpret nature in rotation. This new theory has been tested experimentally returning positive results, including by third parties. Plasma rotation is an essential factor in the analysis of the turbulent transport of momentum in axisymmetric systems. In magnetic confinement fusion systems, the plasma circulates in the container at a constant movement, which we could define as rotation with respect to its walls. Notwithstanding, it has been shown that the plasma in the reactor can initiate spontaneous circular movement or rotation, without the need for any external dynamic momentum input. The theoretical development of this behavior is still under study, and the origin of this spontaneous intrinsic rotation is still unclear.
Downloads
- Article PDF
- TEI XML Kaleidoscope (download in zip)* (Beta by AI)
- Lens* NISO JATS XML (Beta by AI)
- HTML Kaleidoscope* (Beta by AI)
- DBK XML Kaleidoscope (download in zip)* (Beta by AI)
- LaTeX pdf Kaleidoscope* (Beta by AI)
- EPUB Kaleidoscope* (Beta by AI)
- MD Kaleidoscope* (Beta by AI)
- FO Kaleidoscope* (Beta by AI)
- BIB Kaleidoscope* (Beta by AI)
- LaTeX Kaleidoscope* (Beta by AI)
How to Cite
Published
2016-03-15
Issue
Section
License
Copyright (c) 2016 Authors and Global Journals Private Limited
This work is licensed under a Creative Commons Attribution 4.0 International License.