A Note on Semilattice Decompositions of Epigroups

By Liu Jing-Guo
Linyi University, China

Abstract - The purpose of this paper is to study epigroups admitting a decomposition into a semilattice of σ_n-simple semigroups. We give further remark on semilattice decompositions of epigroups and characterize them by using some relations, ideals on/of S and certain special elements in S.

Keywords: epigroup; semilattice decompositions; σ_n-simple semigroups.

MSC(2000) : 20M10
A Note on Semilattice Decompositions of Epigroups

Liu Jing-Guo

Abstract - The purpose of this paper is to study epigroups admitting a decomposition into a semilattice of σ_n-simple semigroups. We give further remark on semilattice decompositions of epigroups and characterize them by using some relations, ideals on/of S and certain special elements in S.

Keywords: epigroup; semilattice decompositions; σ_n-simple semigroups

1. Introduction and Preliminaries

The relation \rightarrow introduced by M. S. Putcha in [1] and T. Tamura in [2], plays a crucial role in semilattice decompositions of semigroups. General properties of the graphs that correspond to these relations were studied by M. S. Putcha in [3] and the structure of semigroups in which the minimal paths in the graph corresponding to \rightarrow are bounded was described by M. Cirić and S. Bogdanović in [4]. The latter semigroups have also been studied by S. Bogdanović, M. Ćirić and Ž. Popović in [5]. Further, semilattice decompositions are especially interesting when they are considered for epigroups. A characterization of the least semilattice congruence on such semigroups was given by M. S. Putcha in [6], and by L. N. Shevrin (See the survey paper [7]). In [8], Ž. Popović, S. Bogdanović and M. Ćirić study epigroups admitting a decomposition into a semilattice of σ_n-simple semigroups and described them in terms of properties of their idempotents. In this paper we will give a note on semilattice decompositions of epigroups by using some relations, ideals on/of S and certain special elements in S.

Now we give precise definitions of the notions used above and the ones that will be used in the further text. \mathbb{N} will be used in the sequel to denote the set of all positive integers. Let S be a semigroup. For a subset A of S, we define

$$\sqrt{A} = \{x \in S | (\exists n \in \mathbb{N}) x^n \in A\}.$$

A subset A of S is completely semiprime if for any $x \in S, x^2 \in A$ implies $x \in A$. If A is an ideal of S, then it is completely semiprime if and only if $\sqrt{A} \subseteq A$. The division relation $|$ and the relation \rightarrow on S are defined by

$$a|b \iff (\exists x, y \in S^1) b = xay, \quad a \rightarrow b \iff (\exists k \in \mathbb{N}) a|b^k.$$
For \(n \in \mathbb{N} \), \(n \geq 2 \), the relation \(\rightarrow^n \) on \(S \) is defined by
\[
a \rightarrow^n b \iff (\exists x \in S) a \rightarrow^{n-1} x \rightarrow b,
\]
and for \(n = 1 \), \(\rightarrow^1 \) is \(\rightarrow \). In other words, \(\rightarrow^n \) is the \(n \)-th power of \(\rightarrow \) in the semigroup of binary relations on \(S \). The transitive closure of \(\rightarrow \) is denoted by \(\rightarrow^\infty \). For \(n \in \mathbb{N} \) and \(a \in S \), the sets \(\Sigma_n(a) \) and \(\Sigma(a) \) are defined by
\[
\Sigma_n(a) = \{ x \in S \mid a \rightarrow^n x \}; \quad \Sigma(a) = \{ x \in S \mid a \rightarrow^\infty x \},
\]
and the equivalence relations \(\sigma_n \) and \(\sigma \) on \(S \) are defined by
\[
(a, b) \in \sigma_n \iff \Sigma_n(a) = \Sigma_n(b); \quad (a, b) \in \sigma \iff \Sigma(a) = \Sigma(b).
\]
In other words,
\[
\Sigma_1(a) = \sqrt{aSa}, \quad \Sigma_{n+1}(a) = \sqrt{a \Sigma_n(a)S} \supseteq \Sigma_n(a); \quad \text{and} \quad \Sigma(a) = \bigcup_{n \in \mathbb{N}} \Sigma_n(a).
\]
As it was proved by M. Ćirić and S. Bogdanović in \([4]\), \(\sigma \) is the least semilattice congruence on \(S \) and \(\Sigma(a) \) is the least completely semiprime ideal of \(S \) containing \(a \), called the principal radical of \(S \) generated by \(a \). The set \(\Sigma_n(a) \) is called the \(n \)-radical generated by \(a \). Let \(A \) be a nonempty subset of a semigroup \(S \). Then
\[
\Sigma(A) \overset{def}{=} \bigcup_{a \in A} \Sigma(a)
\]
is the least completely semiprime ideal of \(S \) containing \(A \). A semigroup \(S \) is \(\sigma_n \)-simple if \(\sigma_n \) coincides with the universal relation on \(S \), and \(\sigma_1 \)-simple semigroups are also called archimedean semigroups. The set of all idempotents of a semigroup \(S \) is denoted by \(E(S) \). If \(e \in E(S) \), then
\[
G_e = \{ x \in S \mid x \in eS \cap Se, \ e \in xS \cap Sx \}
\]
is the largest subgroup of \(S \) having \(e \) as its identity, called the maximal subgroup of \(S \) determined by \(e \), and the set \(K_e \) is defined by \(K_e = \sqrt{G_e} \). An element \(a \) of \(S \) is group-bound if at least one of its powers lies in some subgroup of \(S \). There is exactly one such subgroup, and its identity is denoted by \(a^\omega \). A semigroup \(S \) is called an epigroup if every element \(a \) of \(S \) is group-bound. Any epigroup \(S \) is partitioned into the subsets \(K_e \) called unipotency classes. The idempotent of the unipotency class to which an element \(a \) belongs will be denoted by \(e_a \) (here \(e_a = a^\omega \)). The element \(\overline{a} = (ae_a)^{-1} \) is the inverse of \(ae_a \) in the group \(G_{e_a} \). This element is called the pseudo-inverse of \(a \). The following equalities hold:
\[
\overline{a}a = a\overline{a} = e_a, \ e_a\overline{a} = \overline{a}, \ a^m e_a = a^m \text{ for some } m \in \mathbb{N}.
\]
We will denote by \(\mathcal{K} \) the equivalence relation on an epigroup \(S \) corresponding to the partition of the given epigroup \(S \) into its unipotency classes and \(\mathcal{H}, \mathcal{D} \) and \(\mathcal{J} \) are the well known Green relations.

For undefined notions and notations we refer to the book \([10]\).
II. THE MAIN RESULT

We start this section by recalling some results obtained from the paper [4] by M. Ćirić and S. Bogdanović, the paper [9] by Ž. Popović, S. Bogdanović and M. Ćirić.

Theorem 2.1[4] Let \(n \in \mathbb{N} \). Then the following conditions on a semigroup \(S \) are equivalent:

(i) \(S \) is a semilattice of \(\sigma_n \)-simple semigroups;
(ii) every \(\sigma_n \)-class of \(S \) is a subsemigroup;
(iii) for every \(a \in S \), \(\Sigma_n(a) \) is an ideal of \(S \);
(iv) \((\forall a, b \in S) \Sigma_n(ab) = \Sigma_n(a) \cap \Sigma_n(b)\);
(v) \((\forall a, b, c \in S) a \rightarrow^n b \land b \rightarrow^n c \implies a \rightarrow^n c\);
(vi) \(\sigma_n = \rightarrow^n \cap (\rightarrow^n)^{-1} \) on \(S \).

Theorem 2.2[9] Let \(S \) be an epigroup and \(n \in \mathbb{N} \). Then \(S \) is a semilattice of \(\sigma_n \)-simple semigroups if and only if for every \(a \) of \(S \) \(a\sigma_n a\omega \).

Next we prove some auxiliary lemmas.

Lemma 2.1 Let \(a \) be a group-bound element of a semigroup \(S \). Then for every \(b \in S \) and every \(n \in \mathbb{N} \), \(a \rightarrow^n b \) implies \(a \rightarrow^n b \). In other words, for every \(n \in \mathbb{N} \),

\[\Sigma_n(a) \subseteq \Sigma_n(b). \]

Proof Since \(a = a^2a \in SaS \), we have \(S\sigma S \subseteq SaS \). It follows that

\[\Sigma_1(a) = \sqrt{S\sigma S} \subseteq \sqrt{SaS} \subseteq \Sigma_1(a). \]

Now, by induction we easily verify that \(\Sigma_n(a) \subseteq \Sigma_n(a) \), for every \(n \in \mathbb{N} \).

Lemma 2.2 Let \(a \) be some element of an epigroup \(S \). Then for every \(b \in S \) and every \(n \in \mathbb{N} \),

\[\pi \rightarrow^n b \text{ if and only if } a^\omega \rightarrow^n b. \]

In other words, for every \(n \in \mathbb{N} \),

\[\Sigma_n(\pi) = \Sigma_n(a^\omega). \]

Proof Since \(\pi H a^\omega \), then \(\pi D a^\omega \). This together with Lemma 5 in [4], and the known fact \(D = J \) for any epigroup, \(D \subset \sigma_1 \subset \sigma_2 \subset \cdots \subset \sigma_n \subset \cdots \), we have \(\pi \sigma_n a^\omega \).

Lemma 2.3 Let \(b \) be a group-bound element of a semigroup \(S \). Then for every \(a \in S \) and every \(n \in \mathbb{N} \),

\[a \rightarrow^n b \text{ if and only if } a \rightarrow^n b. \]

Proof Let \(m \in \mathbb{N} \) such that \(b^m \in G_{cb} \). Consider an arbitrary \(a \in S \). Suppose that \(a \rightarrow b \). Then \(b^k = uav \), for some \(u, v \in S \), \(k \in \mathbb{N} \), and thus

\[b^k = (uvb)^k = b^kb^k = b^k uavb^k \in SaS. \]

Hence we obtain \(a \rightarrow b \).
Conversely suppose that \(a \rightarrow \bar{b}\). Then \(b^k = uav\), for some \(u, v \in S\), \(k \in \mathbb{N}\), and hence for some \(m \in \mathbb{N}\)

\[
b^{mk} = b^{mk}b^ω = b^{mk}(b^ω)^k = b^{mk}(\bar{b})^k = b^{mk}\bar{b}^k = b^{mk}uavb^k \in SaS.
\]

Thus we get \(a \rightarrow b\). Therefore, we have proved that our assertion holds for \(n = 1\). By induction we easily verify that this assertion holds for every \(n \in \mathbb{N}\).

Lemma 2.4 For any epigroup, we have \(K ∨ D = (\rightarrow ∩ \rightarrow^{-1})^∞\).

Proof It is easy to verify that \(K \subseteq (\rightarrow ∩ \rightarrow^{-1})\), \(D \subseteq (\rightarrow ∩ \rightarrow^{-1})\). Since the join \(K ∨ D\) is the smallest equivalence containing \(K\) and \(D\) and \((\rightarrow ∩ \rightarrow^{-1})^∞\) is an equivalence, it follows that \(K ∨ D \subseteq (\rightarrow ∩ \rightarrow^{-1})^∞\).

Conversely, by virtue of Corollary 3 in [6], \((\rightarrow ∩ \rightarrow^{-1})^∞\) is the transitive closure of \(\sim ∩ D\) on \(S\), where \(\sim\) is the Schwartz’s equivalence \((a \sim b\) if and only if \(a^i = b^j\) for some \(i, j \in \mathbb{N}\)). But then as \(\sim \subseteq K\), we have \((\rightarrow ∩ \rightarrow^{-1})^∞ \subseteq K ∨ D\).

For any ideal \(I\) of \(S\), we set

\[
Q_I = \sqrt{I}, \quad Q_{I_{n+1}} = \sqrt{SQ_{I_n}S} \supseteq Q_{I_n}, \quad n \in \mathbb{N}.
\]

Now we are prepared for the main result of the paper.

Theorem 2.3 Let \(S\) be an epigroup and \(n \in \mathbb{N}\). Then the following conditions are equivalent:

(i) \(S\) is a semilattice of \(σ_n\)-simple semigroups;
(ii) \((∀a \in S)\ aσ_n\bar{a}\);
(iii) Every \(σ_n\)-class of \(S\) is a subepigroup;
(iv) \(√σ_n \subseteq σ_n\);
(v) \(√D \subseteq σ_n\);
(vi) \(K \subseteq σ_n\);
(vii) \(K ∨ D \subseteq σ_n\);
(viii) For any ideal \(I\) of \(S\), the set \(Q_{I_n}\) is ideal.

Proof (i)\(⇒\)(ii) For any element \(a\) of \(S\), \(a^i \in G_{e_a}\) and \(a^i = a^i\bar{a}\), for some \(i \in \mathbb{N}\). Then \(\bar{a} \rightarrow a\) and \(a[\bar{a}\) and if (i) holds, then by (vi) of Theorem 1 it follows \(aσ_n\bar{a}\).

(ii)\(⇒\)(iii) By Lemma 2.3, for every \(a \in S\), \(aσ_n\bar{a}σ_n a\bar{a}\). Notice that \(σ_n\) is an equivalence relation on \(S\). Again by Theorem 2.1, \(S\) is a semilattice of \(σ_n\)-simple semigroups and Every \(σ_n\)-class of \(S\) is a subsemigroup. This together with the assumption of (ii), every \(σ_n\)-class of \(S\) is a subepigroup, since a subsemigroup of an epigroup that is closed under pseudo-inversion is a subepigroup.

(iii)\(⇒\)(iv) Let \(a√σ_n b\). Then \(a^mσb^n\) for some \(m, n \in \mathbb{N}\). By hypothesis and Theorem 2.1 we have \(aσ_n a^mσb^n\bar{a}\). Thus \(aσ_n b\), which was to be proved.

(iv)\(⇒\)(v) By Lemma 5 in [4] (see the proof of Lemma 2.2) we have \(D \subseteq σ_n\) and thus \(√D \subseteq √σ_n\). Therefor (v) holds.

(v)\(⇒\)(vi) It is known that in epigroup \(K \subseteq √H \subseteq √D\). So (vi) holds.

(vi)\(⇒\)(vii) By (vi) we have \(K ∨ D \subseteq σ_n\), since \(D \subseteq σ_n\) always holds and these relation are all equivalence relations on \(S\).
(vii)\Rightarrow(viii) Notice that $a(K \vee D)a^\omega$ holds such that $a\sigma_n a^\omega$ by assumption, hence S is a semilattice of σ_n-simple semigroups by Theorem 2.2 and thus, $\longrightarrow^n=\longrightarrow^\infty$, which implies $\Sigma_n(a)=\Sigma(a)$. Hence for any nonempty subset A of S,

$$\Sigma_n(A) = \bigcup_{a \in A} \Sigma_n(a) = \bigcup_{a \in A} \Sigma(a) = \Sigma(A)$$

is the smallest completely semiprime ideal of S containing A. Let I be an ideal of S and $a \in I$. Then

$$SaS \subseteq I, \Sigma_1(a) \subseteq Q_{I_1}, \ldots, \Sigma_n(a) \subseteq Q_{I_n}$$

and thus $\Sigma_n(I) = \Sigma(I) \subseteq Q_{I_n}$. On the other hand, for any $b \in Q_{I_n}$, that is,

$$a \longrightarrow x_1 \longrightarrow \ldots \longrightarrow x_{n-1} \longrightarrow b,$$

where $a \in I, x_i \in Q_{I_n}, 1 \leq i < n, i \in \mathbb{N}$. It follows that $b \in \Sigma_n(a)$ and thus $Q_{I_n} \subseteq \Sigma(I)$.

(viii)\Rightarrow(i) For any $a \in S$, Let $I = S^1aS^1$. Obviously I is an ideal of S. Then by the hypothesis of (viii), together with Lemma 1 in [4] and Theorem 2.1, $\Sigma_n(a)$ is an ideal. Again by Theorem 2.1, S is a semilattice of σ_n-simple semigroups.

Remark Notice that in the proof ((vii)\Rightarrow(viii)) of Theorem 2.3, $a(K \vee D)a^\omega$ always holds such that $a\sigma_n a^\omega$ by assumption and hence σ_n is a semilattice congruence on S. Therefor by Lemma 2.4, $K \vee D = (\longrightarrow \cap \longrightarrow^{-1})^\infty \subseteq \sigma_n$ prevails, since $(\longrightarrow \cap \longrightarrow^{-1})^\infty$ is the smallest semilattice congruence on S.

REFERENCES