Microbiological Risk Assessment and Anti-Microbial Activities of Azadirachta Indica Stem Extract against Sanitary Indicator Bacteria Associated with Kunnu Samples

By Ajao, A.T., Yakubu, S.E

Ahmadu Bello University, Zaria

Abstract - Microbiological risk assessment of kunnu sold in Ilorin metropolis and therapeutic effect of methanolic extract of A. indica against sanitary indicator bacteria isolated from it was evaluated. Antibiotic susceptibility pattern and invitro therapeutic efficacy of Azadirachta indica stem extract was determined. This study indicated that the Kunnu samples were grossly contaminated with high plate count of $7.2 \times 10^6$ cfu/ml. Total Salmonella/Shigella plate count, Listeria monocytogenes counts, Total Staphylococcal count, total coliform count and E.coli were ranged between $(12\times10^1 – 7.6 \times 10^3)$ cfu/ml, $(4.8\times10^2 – 25\times10^4)$cfu/ml, $(9.4\times10^1 – 1.0\times10^4)$cfu/ml $(0.30\times10^2 – 1.36\times10^5)$cfu/ml and $(0.21\times10^1 – 27\times10^3)$cfu/ml respectively. Erythromycin, Gentamycin, Cephalosporin, Ciprofloxacin and Chloramphenicol showed high level of antimicrobial activity against the tested isolates, while they displayed about 40% resistance to Penicillin, Streptomycin, Bacitracin, and Ampicillin. Methanolic extract of A. Indica stem showed inhibitory activity against all the bacterial isolates in which diameter of zone of inhibition, MIC and MBC ranged between 15-28mm, 3.125-50mg/ml and 3.125-100mg/ml respectively. E.coli showed highest zone of inhibition of 28mm with 3.125mg/ml and 6.25mg/ml of MIC and MBC respectively while pseudomonas sp showed lowest zone of inhibition of 15mm and 50-100mg/ml for MIC and MBC respectively. Control of both pathogens and spoilage bacteria in kunnu becomes important in order to produce food that when properly handled and stored, will have a long shelf life and reduce the incidence of food borne diseases.

Keywords : Microbiological risk assessment, A. indica, susceptibility, kunnu, sanitary indicator bacteria.

GJSFR Classification :
Microbiological Risk Assessment and Anti-Microbial Activities of Azadirachta Indica Stem Extract against Sanitary Indicator Bacteria Associated with Kunnu Samples

Ajao, A.T.ᵃ, Yakubu,S.E⁰

Abstract - Microbiological risk assessment of kunnu sold in Ilorin metropolis and therapeutic effect of methanolic extract of A. indica against sanitary indicator bacteria isolated from it was evaluated. Antibiotic susceptibility pattern and in vitro therapeutic efficacy of Azadirachta indica stem extract was determined. This study indicated that the Kunnu samples were grossly contaminated with high plate count of 7.2 x 10⁶ cfu/ml. Total Salmonella/Shigella plate count, Listeria monocytogenes counts, Total Staphylococcal count, total coliform count and E.coli were ranged between (12x10⁶ – 7.6 x 10⁹) cfu/ml, (4.8x10⁸ – 25x10⁸) cfu/ml, (9.4x10⁸ – 1.0x10⁹) cfu/ml (0.3x10² – 1.36x10⁶) cfu/ml and (0.21x10¹ – 27x10⁹) cfu/ml respectively. Erythromycin, Gentamycin, Cephalosporin, Ciprofloxacin and Chloramphenicol showed high level of antimicrobial activity against the tested isolates, while they displayed about 40% resistance to Penicillin, Streptomycin, Bacitracin, and Ampicillin. Methanolic extract of A. Indica stem showed inhibitory activity against all the bacterial isolates in which diameter of zone of inhibition, MIC and MBC ranged between 15-28mm, 3.125-50mg/ml and 3.125-100mg/ml respectively.

Keywords : Microbiological risk assessment, A. indica, susceptibility, kunnu, sanitary indicator bacteria.

1. INTRODUCTION

Kunnu is a cereal-based beverage in Nigeria. It is marketed in all parts of Nigeria; the cereals used in its production are Millet, sorghum, and maize in decreasing order of preference (Gaffa, et al., 2002, Nwachukwu, et al., 2009).

Non-alcoholic beverages play a very important role in the dietary pattern of people in developing countries like Nigeria. They are regarded as after meal drinks or refreshing drinks during the dry season in rural and urban centres. The sorghum grain Kunu-Zaki has about 76.3% starch, 11.6% proteins, 3.3% fat 1.9% fibre and 1.3% ash along with a wide array of amino-acids (Lichtenwalner et al., 1979). The additive that is used is sweet potato; it contains essential amino acid and is a rich source of vitamins (Osuntogun and Aboaba, 2004).

It provides a source of income and a means of poverty alleviation and contributes to variety in the diet and the food security of millions. Small-scale food industry also provides linkage to local suppliers of agricultural raw materials and to income generating activities such as the manufacture of machinery, packaging and ingredients (FAO, 1997). The traditional production process involves: steeping the grain in a local household utensils such as calabashes, and earthen were vessels and grinding of the stepped grain with ginger in grinding machine to pulverize the grains for enzymatic actions. (Adeniyi and Umar, 1994; Onuorah, et al., 1987).

The traditional production of Kunu is still at village technology level. The process of production involves wet milling of the cereal, wet sieving, partial gelatinization of the slurry, sugar addition and bottling (Adjuyitan et al., 2008). The fermentation process may last for 12-72hours (Gaffa and Ayo, 2002) after which it is kept for acidification to develop.

The quality of the drinks therefore depends on the raw materials and the hygiene of the personnel, water and the production environment. Brief fermentation, involving mainly lactic acid bacteria and yeast, usually occurs during steeping of grains in water over 8-48 hours (Odunfa and Adeleye, 1985). The consumption rate of the beverage has also been studied (Gaffa and Ayo, 2002). Owing to the high demand for this product and the high consumption rate, it is thought that the present traditional production process is outdated, inefficient, time consuming and with product quality varying between batches.

Authorᵃ : Department of Biology, Kwara State Polytechnic, Ilorin, Nigeria, E-mail : ajaoabdullahi@yahoo.com +2348060276738.

Author⁰ : Department of Microbiology, Ahmadu Bello University, Zaria.
Most of these beverages are made up of about 90% of water, sugar, flavouring agents and sometimes preservatives (Osuntogun and Aboaba, 2004) but some of the waters used for kunu processing such as wells and boreholes are prone to contamination from various sources. It has been reported that the microbiological quality of most of the pipe borne and well water supplies to some communities in Nigeria is poor with coliform counts far exceeding the level recommended by WHO (Adesiyun 1983). Feacal contamination of water supplies and contaminated food handlers has most frequently been implicated in the outbreak of food poisoning caused by Escherichia coli (Adams and Moss, 1999). Unsafe water is a global public health threat, placing persons at risk for a host of diarrheal and other diseases as well as chemical intoxication Hughes and Koplan, 2005.

Pathogens such as Bacillus cereus, Salmonella sp and Escherichia coli are naturally present in soil, and their present on fresh produce is not rare. Salmonella, Escherichia coli 0157:H7, Campyllobacter jejuni, Vibrio cholerae, parasites, and viruses are more likely to contaminate foods most especially ready to eat food.

The presence of the amount of sanitary indicator organisms in foods are of importance in the assessment of the quality and safety of foods (Egwakhide and Faremi, 2010); Edema et al., (2008) reported that in developing countries, despite the appeared death of sustainable disease surveillance and reporting, it is widely known that cholera, Salmonellosis, Shigellosis, Typhoid, Brucellosis, Poliomyelitis and Escherichia coli infections are prevalent (FAO/WHO, 2003). A major obstacle in the consumption of Kunu is the outbreak of listeriosis, a food borne disease called listeriosis, is caused by Listeria monocytogenes, a gram positive, facultative anaerobe which occurs singly or in pairs, also in short chains. (Murray et al, 2002). Even though, epidemiological evidence on outbreaks of food borne disease as a result of taking kunu is scarce, there are indications that it could still be contaminated to unsafe level at the point of consumption with air flora an other microorganisms from handlers, equipment serving containers, raw materials and lack of portable water for processing. This indicates the need for more effective methods to control microbial access to foods through efficient sanitation that helps to produce food that, when properly handled and stored, will have a long shelf life and reduce incidence of food born diseases ( Marriot, 1989 Cords and Dychdala, 1993).

Bacterial resistance to antibiotics represents a serious problem for clinicians and the pharmaceutical industry and great efforts are being made to reverse this trend, and one of them is widespread screening of medicinal plants from the traditional system of medicine hoping to get some newer, safer, and more effective agents that can be used to fight infections diseases (Natarajan et al, 2003). Azadirachta indica is one of such medicinal plants belonging to the family Meliaceae and is Indigenous to southern Asia (Akula et al., 2003).

It is an extensively popular tree in Nigeria and is commonly referred to as “Neem” (English), “Dogon Yaro” (Hausa), “Gaaqadina” (Fulfude) and “Akun Shorop” (Igbo). Azadirachta indica is a multi-purpose timber tree from which high value products are extracted for use as an insecticide, fertilizers and multipurpose medicines. Azadirachta indica, it is popularly known as the village dispensary (Akula et al., 2003).

The therapeutic efficacies of the Azadirachta indica have been described by practioners of traditional medicine. Some of the ethnomedicinal uses included treatment of skin disorders, rashes and boils, stomach ulcer, rheumatism, respiratory tract infections, sore gums and throat, eye and ear infections, leprosy and diabetes (Isman et al., 1990; Kaura et al., 1998, Akula et al., 2003). Also, the medicinal uses has been reported by several workers and these includes having antipyretic (Okpanyi and Ezenkwa, 1981), antimalaria (Tella, 1977), anti-tumour (Fujiwara et al., 1982), anti-ulcer (Pillai and Santhakumari, 1984) antidiabetic (Shukla et al., 1984) and cardiovascular properties (Thompson and Anderson, 1978). In a precious survey of plant used for the treatment of ear and eye infections, amongst the practitioners of traditional medicine and other knowledgeable rural dwellers in the northern parts of Nigeria, the neem seed was listed as one of the most popular source of medicaments.

The microbiological safety of food and water is achieved by as far as possible ensuring the absence of pathogenic microorganisms and by all means preventing their multiplication (Edema and Omemu, 2004). Nearly, 90% of diarrheal related deaths have been attributed to unsafe or inadequate water supplies and sanitation (Younes and Bartram 2001; WHO, 2004).

This work is aimed to determine the microbiological risk assessment of kunnu sold in ilorin metropolis and also to evaluate the therapeutic values of methanolic extract of A. indica against isolated sanitary indicator bacteria associated with the purpose of improving its quality using botanical compound to serve as preservatives.

II. MATERIALS AND METHODS

a) Sampling Procedures

Ten samples each of Kunnu beverages from ten different locations within Ilorin metropolis were purchased in plastic containers that were washed with 70% ethanol and rinsed twice with sterile distilled water. They were labeled at the point of purchased and transported to the lab within 4hours after sampling.

b) Microbiological Evaluation

Ten milliliter(10ml) of each sample were aseptically transferred into 90ml of 0.1% sterile peptone water, appropriate dilutions (up to 10^6) were prepared, 0.2ml of inoculums was plated on each plates (Harrigan
and McCance, 1976) has reported by Edema et al., (2008); (Fawole and Oso 2001); (Oranusi, 2003). Aerobic mesophiles were made on plate count agar (oxoid, UK) coliform count on MacConkey agar, E.coli on Eosin Methylene Blue agar, Staphylococcus sp on Manitol Salt Agar, PALCAM agar on Listeria sp. (oxoid, UK).

One milliliter (1ml) of the aliquot from serially diluted samples was plated on each of the media using pour plate method for the enumeration of the bacteria associated with the kunnu samples. Ten milliliter (10ml) of the samples was enriched in selenite F and incubated for 24hours thereafter plated on salmonella shigella agar (SSA) . All the plates were incubated at 37°C for 48hours. All the colonies were subcultured and stored in a stock culture before used.

c) Antimicrobial susceptibility testing

A standard disc diffusion method of (Jorgensen and Turnidge 2003) was used. The antibiotics used are, Penicillin G10 units, Cephalosporin 30μg, Bacitracin 10 units, Streptomycin 10μg, Ampicillin 30μg, Gentamycin 10μg, Erythromycin 10μg, Tetracycline 3μg, Ciprofloxacin 5μg, Chloramphenicol 30μg, Kanamycin 10μg.

d) Collection of plants

Stem of Azadirachta indica (Neem plant) were collected from Kwara State polytechnic main campus, Ilorin and authenticated at the department of Plant Biology, University of Ilorin.

e) Plant extraction preparation

The plant materials used (A. indica) were collected and dried in shade. The dried stem were grounded to power and suspended in petroleum ether and kept in refrigerator overnight for removing all the fatty substances, overnight incubation the supernatant was discarded and the residue was dried at room temperature. 50mgs of residues were soaked in 250ml of methanol and kept at 4°C overnight; the supernatant was filtered and dried to evaporate the organic solvent at room temperature. The sedimentoed extract was weighed and dissolved in 0.1% Dimethyl Sulfoxide (DMSO) to get 100mg/ml concentration. (Natarajan et al., 2003)

f) Standardization of inoculum

The selected sanitary indicator bacteria isolated from kunu samples were standardized to that of the 0.5 Mcfarland standard (1.5 x 10^8 cfu/ml) by adding sterile distilled water.

g) Inhibition assays

Bacterial isolates were cultivated in nutrient broth at 35°C for 2-6 hours to achieve standardized inoculum (1.5 x 10^8cfu/ml) of each of the isolated sanitary indicator bacterium (in duplicates) swabs were dipped into their suspension and then streaked over the surface of the Mueller Hinton agar and allowed to dry for 15minutes before the antibiotic discs were applied. The diameters of zone of inhibition were recorded after incubation at 37°C for 24hours.

h) Evaluation of antimicrobial activity

The preliminary antimicrobial screenings of the methanolic extract of the plant was carried out using the agar diffusion techniques (Singleton, 1999, Ahmed and Beg, 2001; Pundir, et al., 2010). Mueller Hinton agar plates were inoculated with 0.1ml of standardized inoculum (1.5 x 10^6 cfu/ml) of each selected bacterial isolate and spread with sterile swabs. A standard cork borer of 8mm diameter was used to cut uniform wells in agar plates containing the bacterial inoculum and the lower portion was sealed with molten agar medium. A 0.1ml volume of the crude plant extract was poured into a well of inoculated plates. The plates were incubated at 37°C for 24hours after which diameters of zone of inhibition were measured (Obiukwu and Nwanekwu, 2009, Pundir et al, 2010).

i) Antibacterial activity

Antibacterial activity was recorded if the zone of inhibition was greater than 8mm (Hammer et al, 1999) as reported by Pundir et al., (2010). The antibacterial activity results were expressed in terms of the diameter of zone of inhibition and <9mm zone was considered as inactive; 9-12mm as partially active, while 13-18mm as active and >18mm as very active (Junior and Zanil, 2000).

j) Determination of the minimum inhibitory concentration (MIC)

The MICs of the methanolic plant extract was determined using macrodilution broth method of (Pundir et al., 2010) with little modification. A twofold serial dilution of the extract was prepared in sterile Mueller-Hinton broth to achieve a decreasing concentration ranging from (200 to 1.56mg/ml). Each dilution was (1.5 x 10^6 cfu/ml). The inoculated tubes were incubated at 37°C for 24 hours. The MIC was taken as the lowest concentration that inhibited the growth of the organism from the tubes. A100μ of the content was plated out onto the surface of agar medium and then incubated for 24hours at 37°C. MBC is then taken as the lowest concentration without growth of organism on the agar plate.

III. RESULTS AND DISCUSSION

Microbiological risk assessment of Kunu and antimicrobial activity of Azadirachta indica stem extract against sanitary indicator bacterial was evaluated. Antibiotic susceptibility pattern and invitro therapeutic efficacy of Azadirachta indica stem extract was determined. This study indicated that the Kunnu samples were grossly contaminated with high plate count of 7.2 x 10^2 cfu/ml. Total Salmonella/Shigella plate count, Listeria monocytogenes counts, Total Staphylococcal count, total coliform count and E.coli
were ranged between \((12 \times 10^3 - 7.6 \times 10^5)\) cfu/ml, \((4.8 \times 10^3 - 25 \times 10^3)\) cfu/ml, \((9.4 \times 10^3 - 1.0 \times 10^6)\) cfu/ml \((0.30 \times 10^2 - 1.36 \times 10^3)\) cfu/ml and \((0.21 \times 10^3 - 27 \times 10^3)\) cfu/ml respectively as shown in table 1.

All the tested *Enterobacteriacea* were not susceptible to all the selected β-lactam antibiotics, the investigation showed considerable variation in susceptibility pattern depending on the species as shown in table 2.

Erythromycin, Gentamycin, Cephalosporin, Ciprofloxacin and Chloramphenicol showed high level of antimicrobial activity against the tested isolates, while they displayed about 40% resistance to Penicillin, Streptomycin, Bacitracin, and Ampicillin. Methanolic extract of *A. Indica* stem showed inhibitory activity against all the bacterial isolates in which diameter of zone of inhibition, MIC and MBC ranged between 15-28mm, 3.125-50mg/ml and 3.125-100mg/ml respectively. *E.coli* showed highest zone of inhibition of 28mm with 3.125mg/ml and 6.25mg/ml of MIC and MBC respectively while *Pseudomonas sp* showed lowest zone of inhibition of 15mm and 50-100mg/ml for MIC and MBC respectively.

### Table 1: prevalence and occurrence of sanitary indicator bacteria associated with kunnu (cfu/ml)

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Plate count</th>
<th>Salmonella / Shigella</th>
<th>Listeria monocytogenes</th>
<th>Total Staphylococcal count</th>
<th>Total Coliform Count</th>
<th>E.coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.2x10^2</td>
<td>12x10^2</td>
<td>45x10^3</td>
<td>5.7 x 10^3</td>
<td>1.36 x 10^5</td>
<td>27x10^4</td>
</tr>
<tr>
<td>B</td>
<td>1.36 x 10^3</td>
<td>-</td>
<td>1.02 x 10^2</td>
<td>4.3 x 10^2</td>
<td>7.5 x 10^4</td>
<td>13x10^2</td>
</tr>
<tr>
<td>C</td>
<td>3.3 x 10^3</td>
<td>76 x 10^3</td>
<td>-</td>
<td>6.1 x 10^2</td>
<td>1.20 x 10^5</td>
<td>81x10^2</td>
</tr>
<tr>
<td>D</td>
<td>1.60 x 10^3</td>
<td>22 x 10^3</td>
<td>67 x 10^1</td>
<td>9.4 x 10^1</td>
<td>0.80 x 10^4</td>
<td>61x10^2</td>
</tr>
<tr>
<td>E</td>
<td>8.0 x 10^4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.30 x 10^2</td>
<td>0.21x10^1</td>
</tr>
<tr>
<td>F</td>
<td>118 x 10^3</td>
<td>12 x 10^1</td>
<td>25 x 10^4</td>
<td>4.6 x 10^3</td>
<td>4.4 x 10^2</td>
<td>15x10^2</td>
</tr>
<tr>
<td>G</td>
<td>1.0 x 10^4</td>
<td>49 x 10^2</td>
<td>7.8 x 10^4</td>
<td>1.8 x 10^2</td>
<td>1.5 x 10^3</td>
<td>30x10^2</td>
</tr>
<tr>
<td>H</td>
<td>1.30 x 10^5</td>
<td>-</td>
<td>1.0 x 10^4</td>
<td>2.30 x 10^3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>1.10 x 10^6</td>
<td>-</td>
<td>-</td>
<td>1.48 x 10^3</td>
<td>23x10^1</td>
<td>-</td>
</tr>
<tr>
<td>J</td>
<td>5.0 x 10^6</td>
<td>10 x 10^2</td>
<td>4.8 x 10^2</td>
<td>5.5 x 10^2</td>
<td>4.0 x 10^3</td>
<td>1.0x10^4</td>
</tr>
</tbody>
</table>

### Table 2: Drug susceptibility pattern of sanitary indicator bacteria isolated from kunnu samples (mm)

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th><em>Salmonella sp</em></th>
<th><em>Staph. aureus</em></th>
<th><em>Pseudomonas sp</em></th>
<th><em>K. pneumonia</em></th>
<th><em>L. monocytogen</em></th>
<th><em>E.coli</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin G (10 units)</td>
<td>2.0</td>
<td>27.0</td>
<td>0.0</td>
<td>4.0</td>
<td>11</td>
<td>0.0</td>
</tr>
<tr>
<td>Cephalosporin 30µg</td>
<td>23</td>
<td>11.0</td>
<td>14.0</td>
<td>30</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Bacitracin 10units</td>
<td>0.0</td>
<td>19.0</td>
<td>0.0</td>
<td>0.0</td>
<td>13</td>
<td>0.0</td>
</tr>
<tr>
<td>Streptomycin 10µg</td>
<td>17</td>
<td>8.0</td>
<td>10</td>
<td>24</td>
<td>17.0</td>
<td>21</td>
</tr>
<tr>
<td>Ampicillin 30 g</td>
<td>3.0</td>
<td>26.0</td>
<td>04</td>
<td>06</td>
<td>14.0</td>
<td>13</td>
</tr>
<tr>
<td>Gentamicin 10µg</td>
<td>23.0</td>
<td>15.0</td>
<td>11</td>
<td>20</td>
<td>15.0</td>
<td>23</td>
</tr>
<tr>
<td>Erythromycin 10µg</td>
<td>10.0</td>
<td>26.0</td>
<td>11</td>
<td>14</td>
<td>13.0</td>
<td>18</td>
</tr>
<tr>
<td>Tetracycline 30µg</td>
<td>6.0</td>
<td>19.0</td>
<td>4.0</td>
<td>14</td>
<td>19.0</td>
<td>17</td>
</tr>
<tr>
<td>Ciprofloxacin 5µg</td>
<td>23.0</td>
<td>13.0</td>
<td>15</td>
<td>25</td>
<td>14.0</td>
<td>18</td>
</tr>
<tr>
<td>Chloramphenicol 30µg</td>
<td>15.0</td>
<td>18</td>
<td>17</td>
<td>21</td>
<td>11.0</td>
<td>20</td>
</tr>
</tbody>
</table>

### Table 3: Susceptibility of the Sanitary Indicator Bacteria to Methanolic extract of *Azadirachta indica* (Neem plant)

<table>
<thead>
<tr>
<th>Test Organisms</th>
<th>Zone Of Inhibition (Mm)</th>
<th>MIC (Mg/Ml)</th>
<th>MBC (Mg/Ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Salmonella sp</em></td>
<td>22</td>
<td>6.25</td>
<td>12.5</td>
</tr>
<tr>
<td><em>Staphylococcus aureus</em></td>
<td>26</td>
<td>3.125</td>
<td>3.125</td>
</tr>
<tr>
<td><em>Pseudomonas sp</em></td>
<td>15</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td><em>Listeria monocytogenes</em></td>
<td>17</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td><em>Klebsiella pneumoniae</em></td>
<td>25</td>
<td>6.125</td>
<td>12.5</td>
</tr>
<tr>
<td><em>E.coli</em></td>
<td>28</td>
<td>3.125</td>
<td>6.25</td>
</tr>
</tbody>
</table>

Sanitary indicator bacteria such as total *coliform*, *E.coli*, *listeria monocytogenes*, *Staphylococcus* and *Salmonella* were used to measure hygienic level of kunnu and handling process in this study. The occurrence of food borne pathogens and sanitary indicator bacteria in this study is an indication that the Kunnu samples sold in Ilorin are neither microbiologically safe nor hygienic. Poor hygiene practices of the food handlers during preparation might have been contributed to their presence as suggested by Mosupye (1999) that the presence of indicator organisms in food may be attributed to poor personal hygiene, poor practices among food handlers and cross contamination from either the environment, water used for processing or serving bottles and this can lead to foodborne illnesses.
High bacterial load of Kunnu in this investigation agreed with the result of (Gaffa et al., 2002, Chukwu et al., 2006). Waikhide and Faremi, (2010); suggested that the possible sources of these organisms in the food samples could be from nose, hand, skin and clothing of handlers, coughing, talking and sneezing droplets which could settle on the food during storage and retailing (Omonigho and Osobur, 2002 and Ojokoh and Tabowei 2002). Besides, high number of bacterial load can also be attributed to raw materials and water used for production process (Nwachukwu et al., 2009).

The presence of the most frequently isolated index of water quality and indicators of faecal contamination such as E.coli, total coliform and salmonella sp in this study is an indication of faecal contamination of the water used for processing coupled with poor environmental sanitation (Treve&t al., 2005).

Water fetched from wells and taps were transferred into containers, facilities that are not washed for several days, leaving sediments to settle at the bottom which might served as source of contamination and unhygienic handling of food. The isolation of staphylococcus sp, Salmonella sp and Pseudomonas sp in this study is of practical importance and it is an evidence of poor sanitary condition and lack of adequate portable water. Salmonella contamination is usually associated with food and animal faeces and its presence in this study is a signal of faecal contamination of both human and animal origin (Dondono, 1977).

In this study a multidrug resistance pattern was observed for E.coli, Salmonella sp and Pseudomonas sp with ampicillin, bacitracin and tetracycline. Bacteria species were susceptible to the ciprofloxacin, gentamicin, erythromycin, ciprofloxacin and chlorphenicol. Resistance to tetracycline and ampicillin might be related to their overuse as opposed to gentamicin and ciprofloxacin which are not used for treating enteric infection in agreement with (Onyuka et al., 2011).

The high prevalence of resistance to tetracycline, ampicillin in E.coli has also been reported by Sifuna, in which E.coli was resistance mostly to ampicillin and tetracycline. Sack, 2001 and Shapiro, 1999 attributed resistance to use of tetracycline of mass prophylaxis during cholera or diarrhea.

None of the pathogens were resistant to ciprofloxacin, several studies have shown that ciprofloxacin offers advantages in the treatment of salmonellosis reaching high concentrations in serum and faeces (Threlfall, 2001; Eduardo, et al., 2001).

The antibacterial activities exhibited by this plant extracts reported here corroborates the finding of other researchers who worked on the antimicrobial activities of this plants on the isolated indicator bacteria (Rao et al., 1986, Tuhin et al; 2007, Koona and Budida, 2011). That methanol extract in this study might have had higher solubility for more phyto constituents, consequently the highest antibacterial activity. The methanolic extract of Azadirachta indica exhibited antibacterial effect (Jafri and Jalis – sub-Hani 1999, Samy and Ignacinauth, 2000). (Koona and Budida 2011) and also demonstrated how MIC and MBC values is an indication that the pyto constituents of the plant have therapeutic properties (Doughari et al, 2008).

The antibacterial activity of Azadirachta Indica might be due to the presence of triterperiods, phenolic compounds, carotenoids, steroids, valavinoids, ketones and tetra-triterperiods Azadirachtin (Koona and Budida 2011).

The findings from the agar diffusion methods showed that the extract exhibit a favourable antimicrobial activity against indicator bacteria. Some of the MIC values obtained in this study were lower than MBC values indicating that the plant extract is bacteriostatic at lower concentration and bacteriocidal at higher concentration (Zakaria et al, 2007).

The standard organization of Nigeria (1985) stated that coliform bacteria and pathogenic microorganisms should not be present in beverages. This applies also to other food products. It was reported that counts of $10^6$ Cells/g for Bacillus cereus (1CMSF, 1974), and $10^6$ cells/g for enterotoxigenic staphylococcus aureus (Bergdoll, 1979) are required to present a risk of intoxication. The presence of coliform and staphylococcus aureus and processing and packaging in a contaminated environment could present a risk (Okonko et al., 2008). The need for microbial assessment of water for production of sea food and food drinks should also be emphasized to reduce possible contamination as reported by Fagade et al., (2005).

### IV. Conclusion/Recommendation

Control of both pathogens and spoilage bacteria in kunnu becomes important in order to produce food that when properly handled and stored, will have a long shelf life and reduce the incidence of food borne diseases. This indicates the need for more effective methods such as HACCP to control microbial access through efficient sanitation and good manufacture practices. However, it can be recommended that the stem extract of the A. indica can serve as preservatives to control microbial growth in kunnu.

### REFERENCES Références Referencias


2. Afolabi O.R, Adams RF, Popoola Tos. (2004). Comparative studies and microbial risk assessment...