Boundary-fixed Homeomorphisms of 2-Manifolds with Boundary

By David J. Sprows
Villanova University

Abstract - Let X be a closed, orientable 2-manifold and let X_n denote the bounded manifold obtained by removing the interiors of n disjoint closed disks from X. Let $H(X_n)$ denote the group of isotopy classes (rel boundary of X_n) of homeomorphisms of X_n which are the identity on the boundary of X_n. $H(X_n)$ has been determined for all n when X is the 2-sphere (see [8] and [10]). This paper investigates the structure of $H(X_n)$ for X not equal to the 2-sphere. In particular, a relationship between $H(X_n)$ and the homeotopy group (mapping class group) of X (see [4],[5] and [11]) is developed.
Boundary-fixed Homeomorphisms of 2-Manifolds with Boundary

David J. Sprows

Abstract - Let \(X \) be a closed, orientable 2-manifold and let \(X_n \) denote the bounded manifold obtained by removing the interiors of \(n \) disjoint closed disks from \(X \). Let \(H(X_n) \) denote the group of isotopy classes (rel boundary of \(X_n \)) of homeomorphisms of \(X_n \) which are the identity on the boundary of \(X_n \). \(H(X_n) \) has been determined for all \(n \) when \(X \) is the 2-sphere (see [8] and [10]). This paper investigates the structure of \(H(X_n) \) for \(X \) not equal to the 2-sphere. In particular, a relationship between \(H(X_n) \) and the homeotopy group (mapping class group) of \(X \) (see [4], [5] and [11]) is developed.

I. INTRODUCTION.

Let \(X \) be a closed, orientable 2-manifold and let \(D_1, ..., D_n \) be disjoint closed disks in \(X \) with \(p_k \) a point in the interior of \(D_k \) for \(1 \leq k \leq n \). Let \(X_n = X - \bigcup_{k=1}^{n} \text{Int}(D_k) \) and \(F_n = \{ p_1, ..., p_n \} \). This paper is concerned with the group \(H(X_n) \) consisting of all isotopy classes (rel \(\partial X_n \)) of homeomorphisms of \(X_n \) which are the identity on the boundary of \(X_n \). Note that in order for two boundary-fixed homeomorphisms of \(X_n \) to represent the same element in \(H(X_n) \) not only must these homeomorphisms be isotopic, but also the isotopy between them must be the identity on the boundary of \(X_n \) for all values \(t, 0 \leq t \leq 1 \). Presentations of \(H(X_n) \) for all \(n \) in the case that \(X \) is the 2-sphere are given in [8]. In this paper it will be shown that if \(X \) is not the 2-sphere, then \(H(X_n) \) can be obtained as part of a short exact sequence involving the free abelian group on \(n \) generators, denoted \(\mathbb{Z}^n \), and the subhomeotopy group of \(X \) consisting of all isotopy classes (rel \(F_n \)) of orientation preserving homeomorphisms of \(X \) which are the identity on \(F_n \), denoted \(H(X, F_n) \). This short exact sequence will then be used to relate \(H(x_n) \) to the homeotopy group of \(X \).

II. BOUNDARY-FIXED HOMEOMORPHISMS

Let \(f : H(X_n) \to H(X, F_n) \) be the function which sends the isotopy class (rel \(\partial X_n \)) of a boundary-fixed homeomorphism \(h \) of \(X_n \) onto the isotopy class (rel \(F_n \)) of the homeomorphism of \(X \) which is obtained by extending \(h \) by the identity over each disk \(D_k \), \(1 \leq k \leq n \). The function \(f \) is clearly well-defined since any isotopy (rel \(\partial X_n \)) of \(X_n \) can be extended by the identity on \(\bigcup_{k=1}^{n} D_k \) to an isotopy (rel \(F_n \)) of \(X \). In fact, \(f \) is an epimorphism since any orientation preserving homeomorphism of \(X \) which is the identity on \(F_n \) can be isotope (rel \(F_n \)) to a homeomorphism which is the identity on \(\bigcup_{k=1}^{n} D_k \) (for details see Part 3c of Lemma 3 of [7]). Moreover using Part 4 of Lemma 3 of [7] we have that a homeomorphism of \(X_n \) is in the kernel of \(f \) if and only if it is isotopic to the identity. That is, the nontrivial elements of the kernel of \(f \) are represented by boundary-fixed homeomorphisms that are isotopic to the identity, but not by an isotopy that keeps the boundary of \(X_n \) fixed. The next two lemmas are concerned with finding representatives of the isotopy classes (rel \(\partial X_n \)) of such homeomorphisms.

Let \(K(X_n) \) denote the kernel of \(f \) and let \(A_k \) be a collar neighborhood of \(\partial D_k \) for \(1 \leq k \leq n \), with \(A_i \cap A_j = \emptyset \) if \(i \neq j \).

Lemma 1: Every element of \(K(X_n) \) can be represented by a homeomorphism that is the identity on \(X - \bigcup_{k=1}^{n} \text{Int}(A_k) \).
Proof: Let h be a homeomorphism that represents an element of $K(X_n)$ and let h_i be an isotopy that takes h to the identity. Using the “unwinding” technique of Proposition 3.22 of [6] it is possible to extend h_i^{-1} to an isotopy g_i of X_n that takes the identity to a homeomorphism that is the identity on $X - \bigcup_{k=1}^n \text{Int}(A_k)$. The isotopy $g_i h_i$ is then an isotopy (rel ∂X_n) that takes h to a homeomorphism of the type given in the statement of the lemma.

For each k, $1 \leq k \leq n$, let $s_k : \partial A_k \rightarrow \partial A_k$ be the homeomorphism given in which spins one component of ∂A_k r-times while holding the other boundary component fixed and by letting s_k restricted to $X_n - A_k$ be the identity. s_k will be referred to as a “spin homeomorphism” of X_n.

Lemma 2: If X is not the 2-sphere, then every element of $K(X_n)$ has a unique representation as a product of spin homeomorphisms.

Proof: A consequence of Theorem 7.2 of [3] is that every homeomorphism of A_k which is the identity on ∂A_k is isotopic (rel ∂A_k) to s_k / A_k for some r. Since A_i is disjoint from A_j for $i \neq j$, this means that any homeomorphism of X_n which is the identity on $X_n - \bigcup_{k=1}^n \text{Int}(A_k)$ is isotopic (rel ∂X_n) to a product of homeomorphisms of the form $s_1 \cdots s_n$. Thus by Lemma 1, every element of $K(X_n)$ can be represented by a product of spin homeomorphisms.

To show that the representation if unique it suffices to show that if $s_1 \cdots s_n$ is isotopic (rel ∂X_n) to the identity, then $r_i = 0$ for $1 \leq i \leq n$. On the contrary, assume this product is isotopic (rel ∂X_n) to the identity, but $r_k \neq 0$ for some k. Let α be a curve which represents a generator of $\pi_1(X_n, q)$ where q is in ∂D_k and α is chosen so that $\alpha \cap A_j = \emptyset$ for $i \neq j$.

Let β_k be a curve based at q which wraps once around ∂D_k in the direction of the spin corresponding to s_k. In the free group $\pi_1(X_n, q)$, the spin homeomorphism s_k represents the same element as $\beta_k^{-r_k} \alpha \beta_k^{r_k}$. However, since $s_1 \cdots s_n$ is isotopic (rel ∂X_n) to the identity and α is outside the support of s_k, for $i \neq k$, we have that $s_k^{r_k}(\alpha)$ must also represent the same element as α in the free group $\pi_1(X_n, q)$. This contradiction establishes the lemma.

It should be noted that Lemma 2 is false in the case that X is the 2-sphere and $n < 3$. For example, when X is the 2-sphere and $n = 1$, then every spin homeomorphism of X_1 is isotopic (rel ∂X_1) to the identity (see [8]).

The next theorem is an immediate consequence of the fact that since the elements of $K(X_n)$ can be represented uniquely as products of spin homeomorphisms and these spin homeomorphisms all commute, the kernel of the epimorphism f is the free group on n generators.

Theorem: If X is not the 2-sphere, then the following sequence is exact:

$1 \rightarrow \mathbb{Z}^n \rightarrow H(X_n) \rightarrow H(X, F_n) \rightarrow 1$ where the function from $H(X_n)$ to $H(X, F_n)$ is given by f as defined at the beginning of this section.

The above theorem shows that $H(X_n)$ can be obtained as an extension of \mathbb{Z}^n by $H(X, F_n)$. In turn $H(X, F_n)$ is part of the short exact sequence

$1 \rightarrow \pi_1(X - F_n^{-1}, p_n) \rightarrow H(X, F_n) \rightarrow H(X, F_n^{-1}) \rightarrow 1$ where the function from $H(X, F_n)$ to $H(X, F_n^{-1})$ sends the isotopy class (rel F_n) of a homeomorphism of X to the isotopy class (rel F_n^{-1}) of this homeomorphism. If we denote this function \mathcal{D}, then the representation of an element in the kernel of \mathcal{D} as an element in $\pi_1(X - F_n^{-1}, p_n)$ is obtained by taking the curve formed by tracing the path of p_n during the isotopy (rel F_n^{-1}) which takes a representative homeomorphism of an element in the kernel of \mathcal{D} to the identity.

Thus, we can build up $H(X, F_n)$ from the homeotopy group of X, $H(X)$, by repeatedly extending $\pi_1(X - F_k)$ by $H(X, F_k)$ for $k = 1, \cdots, n - 1$ (see [1] and [2]).

References Références Referencias

This page is intentionally left blank