On Fractional Calculus and Certain Results Involving K_2-Function

By Kishan Sharma, V. S. Dhakar
Suresh Gyan Vihar University, Jaipur (Raj.), INDIA

Abstract - In the present paper a new function called K_2 - function, which is an extension of the function defined by Miller and Ross[20], is introduced and studied by the author in terms of some special functions and derived the relations that exists between the K_2- function and the operators of Riemann-Liouville fractional integrals and derivatives.

Keywords and Phrases : fractional calculus, Riemann - Liouville fractional integrals and derivatives.

Mathematics Subject Classification : 26A33, 33C60

Strictly as per the compliance and regulations of:
On Fractional Calculus and Certain Results Involving K_2-Function

Kishan Sharma, V. S. Dhakar

Abstract - In the present paper a new function called K_2-function, which is an extension of the function defined by Miller and Ross[20], is introduced and studied by the author in terms of some special functions and derived the relations that exists between the K_2-function and the operators of Riemann - Liouville fractional integrals and derivatives.

Keywords and Phrases: fractional calculus, Riemann - Liouville fractional integrals and derivatives.

I. INTRODUCTION AND DEFINITIONS

Fractional Calculus deals with derivatives and integrals of arbitrary orders. During the last three decades Fractional Calculus has been applied to almost every field of Mathematics like Special Functions etc., Science, Engineering and Technology. Many applications of Fractional Calculus can be found in Turbulence and Fluid Dynamics, Stochastic Dynamical System, Plasma Physics and Controlled Thermonuclear Fusion, Non-linear Control Theory, Image Processing, Non-linear Biological Systems and Astrophysics.

The Mittag-Leffler function has gained importance and popularity during the last one decade due mainly to its applications in the solution of fractional-order differential, integral and difference equations arising in certain problems of mathematical, physical, biological and engineering sciences. This function is introduced and studied by Mittag-Leffler[10,11] in terms of the power series

$$E_\alpha(x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(\alpha n + 1)}, \quad (\alpha > 0) \quad (1.1)$$

A generalization of this series in the following form

$$E_{\alpha, \beta}(x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(\alpha n + \beta)}, \quad (\alpha, \beta > 0) \quad (1.2)$$

has been studied by several authors notably by Mittag Leffler[10,11], Wiman[13], Agrawal[15], Humbert and Agrawal[8] and Dzrbashjan[1,2,3]. It is shown in [5] that the function defined by (1.1) and (1.2) are both entire functions of order $\rho = 1$ and type $\sigma = 1$. A detailed account of the basic properties of these two functions are given in the third volume of Bateman manuscript project[4] and an account of their various properties can be found in [2,12].

The multiindex Mittag-Leffler function is defined by Kiryakova[9] by means of the power series

$$E_{\sum \frac{1}{\rho_j}, (\mu, \nu)}(x) = \sum_{n=0}^{\infty} \varphi z^n = \sum_{n=0}^{\infty} \frac{x^n}{\prod_{j=1}^{m} \Gamma(\mu_j + \frac{n}{\rho_j})}$$

Where $m > 1$ is an integer, ρ_j and μ_j are arbitrary real numbers.

The multiindex Mittag-Leffler function is an entire function and also gives its asypototic, estimate, order and type see Kiryakova[9].

An interesting generalization of (1.2) is recently introduced by Kilbas and Saigo[16] in terms of a special entire function of the form

$$E_{\alpha, m, n}(x) = \sum_{n=0}^{\infty} c_n x^n, \quad (1.4)$$
Where
\[c_n = \prod_{j=0}^{n-1} \frac{\Gamma(\alpha jm + 1)}{\Gamma(\alpha jm + 1 + 1)}, \quad (n = 0, 1, 2, \ldots) \]

and an empty product is to be interpreted as unity. Certain properties of this function associated with fractional integrals and derivatives.[12]

In 1993, Miller and Ross[20] introduced a function as the basis of the solution of fractional order initial value problem. It is defined as the vth integral of the exponential function, that is,
\[E_v(x, a) = \frac{d^{-v}}{dx^{-v}} e^{ax} = x^v e^{ax} \gamma (v, ax) = \sum_{n=0}^{\infty} \frac{\alpha^n}{\Gamma(n + \nu + 1)} n \in C \]
(1.5)

where \(\gamma (v, ax) \) is the incomplete gamma function.

The present paper is organized as follows; In section 2, we give the definition of the \(K_2 \)-function and its relations with another special functions, namely Miller-Ross’s function, generalization of the Mittag-Leffler function[11] and its generalized form introduced by Prabhakar[20] etc. In section 3, relations that exists between \(K_2 \)-function and the operators of Riemann-Liouville fractional calculus are derived.

II. A NEW SPECIAL FUNCTION

The \(K_2 \)-function introduced by the first author is defined as follows:

\[K_2^{(p, q)}(a_1, \ldots, a_p; b_1, \ldots, b_q; x) = K_2^{(p, q)}(x) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{\alpha^n x^{n+\nu}}{\Gamma(n + \nu + 1)} \]
(2.1)

where \(v \in C \) and \((a)_n (i = 1, 2, \ldots, p) \) and \((b)_n (j = 1, 2, \ldots, q) \) are the Pochammer symbols.

The series (2.1) is defined when none of the parameters \(b_j \), \(j = 1, 2, \ldots, q \), is a negative integer or zero. If any numerator parameter \(a_j \) is a negative integer or zero, then the series terminates to a polynomial in \(x \). From the ratio test it is evident that the series is convergent for all \(x > 0 \) and \(n = q + 1 \). The series can converge in some cases. Let \(\gamma = \sum_{j=1}^{\nu} a_j - \sum_{j=1}^{\nu} b_j \). It can be shown that when \(p = q + 1 \) the series is absolutely convergent for \(|x| = 1 \) if \(R(\gamma) < 0 \), conditionally convergent for \(x = -1 \) if \(0 \leq R(\gamma) < 1 \) and divergent for \(|x| = 1 \) if \(1 \leq R(\gamma) \).

Special cases :

(i) When there is no upper and lower parameter, we get
\[K_2^{(0, 0)}(-; ; x) = \sum_{n=0}^{\infty} \frac{\alpha^n x^{n+\nu}}{\Gamma(n + \nu + 1)} \]
(2.2)

Which reduces to the function of Miller and Ross[20].

(ii) If we put \(a_1 = 1, \nu = 0 \) in (2.2), we get
\[K_2^{(0, 0)}(-; ; x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(n + 1)} \]
(2.3)

Which reduces to the Mittag-Leffler function [4] \(E_1(x) \) or generalized Mittag-Leffler function [4] \(E_{1,1}(x) \) or Exponential function[6] \(e^x \)
III. RELATIONS WITH RIEMANN-LIOUVEILLE FRACTIONAL CALCULUS OPERATORS

In this section we derive relations between K_2-function and the operators of Riemann-Liouville Fractional Calculus. The relations are presented in the form of two theorems as follows:

Theorem 3.1 Let $\alpha > 0, \nu \in C$ and I^α_x be the operator of Riemann-Liouville fractional integral then there holds the relation:

$$I^\alpha_x K_2(a_1, ..., a_p; b_1, ..., b_q; x) = \frac{x^{\alpha+\nu}}{\Gamma(\alpha+1)} K_2 \left(\frac{(p+1)\nu+1}{\nu(\alpha+1)} \right) (a_1, ..., a_p, 1; b_1, ..., b_q, \alpha+1; x) \tag{3.1}$$

Proof: Following Section 2 of the book by Samko, Kilbas and Marichev[8], the fractional Riemann–Liouville integral operator is given by

$$I^\alpha_x f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) dt \tag{3.2}$$

By virtue of (3.2) and (2.1), we obtain

$$I^\alpha_x K_2(a_1, ..., a_p; b_1, ..., b_q; x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} \sum_{n=0}^{\infty} (a_1)_n ... (a_p)_n \frac{a^n x^{\nu+n}}{\Gamma(n+\nu+1)} dt \tag{3.3}$$

Interchanging the order of integration and evaluating the inner integral with the help of Beta function, it gives

$$I^\alpha_x K_2(a_1, ..., a_p; b_1, ..., b_q; x) = \frac{x^{\alpha+\nu}}{\Gamma(\alpha+1)} \sum_{n=0}^{\infty} (a_1)_n ... (a_p)_n \frac{a^n x^{\nu+n}}{\Gamma(n+\nu+1)} \frac{a^n x^{\nu+n}}{\Gamma(n+\nu+1)} \tag{3.4}$$

The interchange of the order of integration and summation is permissible under the conditions stated along with the theorem due to convergence of the integrals involved in this process.

This shows that a Riemann-Liouville fractional integral of the K_2-function is again the K_2-function with indices $p+1$, $q+1$.

This completes the proof of the theorem (3.1).

Theorem 3.2 Let $\alpha > 0, \nu \in C$ and D^α_x be the operator of Riemann-Liouville fractional derivative then there holds the relation:

$$D^\alpha_x K_2(a_1, ..., a_p; b_1, ..., b_q; x) = \frac{x^{-\alpha-\nu}}{\Gamma(1-\alpha)} K_2 \left(\frac{(p+1)\nu+1}{\nu(1-\alpha)} \right) (a_1, ..., a_p, 1; b_1, ..., b_q, 1-\alpha; x) \tag{3.5}$$

Proof: Following Section 2 of the book by Samko, Kilbas and Marichev[8], the fractional Riemann-Liouville integral operator is given by

$$D^\alpha_x f(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_0^x (x-t)^{n-\alpha-1} f(t) dt \tag{3.6}$$
Where \(n = [\alpha] + 1 \).

From (2.1) and (3.6) it follows that

\[
D_x^{(p+1,q+1)} K_2^{(p,\alpha)} (a_{\nu}, b_{\nu}; x) = \frac{x^{-\alpha-\nu}}{\Gamma(1-\alpha)} K_2^{(p,\alpha)} (a_{\nu}, 1.b_{\nu}; 1-\alpha; x) \tag{3.8}
\]

This shows that a Riemann-Liouville fractional derivative of the \(K_2 \) - function is again the \(K_2 \) – function with indices \(p+1, q+1 \).

This completes the proof of the theorem(3.2).

IV. ACKNOWLEDGEMENTS

The author is very thankful to Prof. Renu Jain(Gwalior) and Prof. M. A. Pathan(Aligarh) for giving several valuable suggestions in the improvement of the paper.

V. CONCLUSION

It is expected that some of the results derived in this survey may find applications in the solution of certain fractional order differential and integral equations arising problems of physical sciences and engineering areas.

REFERENCES RÉFÉRENCES REFERENCIAS

This page is intentionally left blank