Some Definite Integrals of Gradshteyn-Ryzhik and Other Integrals

By M. I. Qureshi, Kaleem A. Quraishi, Ram Pal

Jamia Millia Islamia (A Central University), New Delhi

Abstracts - In the present paper we evaluate three definite integrals with certain convergence conditions, using Leibnitz rule for differentiation under integral sign and Wallis formula. Some other integrals are also evaluated by means of Leibnitz rule, Kummer’s first transformation and reduction formula, series rearrangement techniques under stated convergence conditions.

Keywords and Phrases: Leibnitz rule for differentiation under the integral sign; Generalized Gaussian Hypergeometric Function; Kamp’e de F´eriet’s General Double Hypergeometric Function; Gamma Function; Kummer’s first transformation; Series rearrangement technique.

2010 Mathematics Subject Classification: Primary 33B15, 33C20; Secondary 33C65
Some Definite Integrals of Gradshteyn-Ryzhik and Other Integrals

M. I. Qureshi, Kaleem A. Quraishi, Ram Pal

Abstract - In the present paper we evaluate three definite integrals with certain convergence conditions, using Leibnitz rule for differentiation under integral sign and Wallis formula. Some other integrals are also evaluated by means of Leibnitz rule, Kummer’s first transformation and reduction formula, series rearrangement techniques under stated convergence conditions.

Keywords and Phrases : Leibnitz rule for differentiation under the integral sign; Generalized Gaussian Hypergeometric Function; Kampé de Féret’s General Double Hypergeometric Function; Gamma Function; Kummer’s first transformation; Series rearrangement technique.

I. INTRODUCTION

The Pochhammer’s symbol or Appell’s symbol or shifted factorial or rising factorial or generalized factorial function is defined by

\[(b, k) = (b)_k = \frac{\Gamma(b + k)}{\Gamma(b)} = \begin{cases} b(b + 1)(b + 2) \cdots (b + k - 1); & \text{if } k \in \mathbb{N} \\ 1; & \text{if } k = 0 \\ k!; & \text{if } b = 1, k \in \mathbb{N} \end{cases} \]

Where \(b\) is neither zero nor negative integer and the notation \(\Gamma\) stands for Gamma function. Throughout this work we shall employ the following definitions.

Generalized Gaussian Hypergeometric Function

Generalized ordinary hypergeometric function of one variable \([4,p.73(2);5,p.42(1)]\) is defined by

\[_{A}F_{B}\left[\begin{array}{c} (a_j)_{j=1}^A \\ (b_j)_{j=1}^B \end{array}; \quad z \right] = \sum_{k=0}^{\infty} \frac{((a_A))_k z^k}{((b_B))_k k!} (1.1)\]

Where denominator parameters \(b_1, b_2, \ldots, b_B\) are neither zero nor negative integers and \(A, B\) are non-negative integers. The symbol \((a_j)_{j=1}^A\) represents the array of \(A\) parameters given by \(a_1, a_2, \ldots, a_A\) with similar interpretation for others.

Conditions for Convergence of (1.1)

If \(A \leq B\), then series \(_{A}F_{B}\) is always convergent for all finite values of \(z\) (real or complex).

If \(A = B + 1\), then series \(_{A}F_{B}\) is convergent for \(|z| < 1\).

For more convergence conditions we refer [4,pp.73-74;5,p.43].

Kampé de Féret’s General Double Hypergeometric Function

We recall the definition of general double hypergeometric function of Kampé de Féret in slightly modified notation of H.M.Srivastava and R.Panda [5,pp.63-64(16,17)].

AuthorA: Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University), New Delhi -110025, India. E-mails : miqureshi_delhi@yahoo.co.in, rampal1966@rediffmail.com

AuthorB: Mathematics Section, Mewat Engineering College (Wakf), Palla, Nuh, Mewat-122107, Haryana, India. E-mail : kaleemjspn@yahoo.co.in
In the continuation of master integral, we evaluated certain definite integrals in sections 4 and 5.

II. SOME INTEGRALS OF GRADSHTEYN AND RYZHIK

\[\int_0^\infty \left[\left(ax + \frac{b}{x} \right)^2 + c \right]^{p-1} dx = \frac{\sqrt{\pi} \Gamma(p + \frac{1}{2})}{2a(c)^{p+\frac{1}{2}} \Gamma(p + 1)} \]

\[(a > 0, b < 0, c > 0, \Re(p) + \frac{1}{2} > 0) \]
Under any condition on \(a, b, c\) and \(p\), the integral (2.3) is not true.

III. Other Forms of Above Integrals

\[
\int_0^\infty \left(a + \frac{b}{x^2} \right) \left(a x + \frac{b}{x} \right)^2 + c \right]^{-p-1} \, dx = \frac{\sqrt{\pi}}{2b(4ab + c)^{p+\frac{1}{2}}} \frac{\Gamma(p + \frac{1}{2})}{\Gamma(p + 1)} \tag{3.1}
\]
\[
\left(a > 0; \ b > 0; \ c + 4ab > 0; \ \Re(p) + \frac{1}{2} > 0 \right)
\]

\[
\int_0^\infty \frac{1}{2x^2} \left(a x + \frac{b}{x} \right)^2 + c \right]^{-p-1} \, dx = \frac{\sqrt{\pi}}{2b(4ab + c)^{p+\frac{1}{2}}} \frac{\Gamma(p + \frac{1}{2})}{\Gamma(p + 1)} \tag{3.2}
\]
\[
\left(a > 0; \ b > 0; \ c + 4ab > 0; \ \Re(p) + \frac{1}{2} > 0 \right)
\]

\[
\int_0^\infty \left(a + \frac{b}{x^2} \right) \left(a x + \frac{b}{x} \right)^2 + c \right]^{-p-1} \, dx = \frac{\sqrt{\pi}}{(4ab + c)^{p+\frac{1}{2}}} \frac{\Gamma(p + \frac{1}{2})}{\Gamma(p + 1)} \tag{3.3}
\]
\[
\left(a > 0; \ b > 0; \ c + 4ab > 0; \ \Re(p) + \frac{1}{2} > 0 \right)
\]

IV. Proofs of (3.1) - (3.3)

Suppose left hand side of (3.1) is denoted by

\[
I(b) = \int_0^\infty \left(a x + \frac{b}{x} \right)^2 + c \right]^{-p-1} \, dx; \quad b \geq 0 \tag{4.1}
\]

Therefore

\[
I(0) = \int_0^\infty \frac{dx}{(a^2 x^2 + c)^{p+1}} = \frac{1}{a(c)^{p+\frac{1}{2}}} \int_0^{\pi} \cos^{2p} \theta \, d\theta = \frac{\sqrt{\pi}}{2a(c)^{p+\frac{1}{2}}} \frac{\Gamma(p + \frac{1}{2})}{\Gamma(p + 1)} \tag{4.2}
\]
If we denote left hand side of (3.1) by $I_1^*(a)$, then $I_1^*(0)$ cannot be calculated due to the divergent nature of resulting integral.

Differentiate (4.1) with respect to b and apply Leibnitz rule (1.3), we get

$$\frac{dI}{db} = -2(p+1) \int_0^\infty \left(a + \frac{b}{x^2}\right) \left[(ax + \frac{b}{x})^2 + c\right]^{-p-2} \, dx$$

$$= -2(p+1) \int_0^\infty \left(a + \frac{b}{x^2}\right) \left[(ax - \frac{b}{x})^2 + (c + 4ab)\right]^{-p-2} \, dx$$

$$= \frac{-4(p+1)}{(4ab + c)^{2p+3}} \int_0^{\frac{\pi}{2}} \cos^{2p+2} \theta \, d\theta$$

Or

$$dI = \frac{-\sqrt{\pi}(2p+1)\Gamma(p + \frac{1}{2})}{(4ab + c)^{2p+3} \Gamma(p+1)} \, db$$

(4.3)

Now integrate (4.3), we get

$$I(b) = \frac{\sqrt{\pi}}{2a(4ab + c)^{p+\frac{1}{2}}} \Gamma(p + \frac{1}{2}) + H$$

(4.4)

Where H is constant of integration.

By putting $b = 0$ in (4.4) and in view of the result (4.2), we get $H = 0$, therefore (4.4) reduces to right hand side of (3.1).

Similarly, if we denote the left hand of (3.2) by

$$I(a) = \int_0^\infty \frac{1}{x^2} \left[(ax + \frac{b}{x})^2 + c\right]^{-p-1} \, dx; \quad a \geq 0$$

Then

$$I(0) = \int_0^\infty \frac{x^{2p}}{(b + cx^2)^{p+1}} \, dx = \frac{\sqrt{\pi}}{2b(c)^{p+\frac{1}{2}}} \Gamma(p + \frac{1}{2})$$

(4.6)

If we denote left hand side of (3.2) by $I_2^*(b)$, then $I_2^*(0)$ cannot be calculated due to the divergent nature of resulting integral.

Differentiate (4.5) with respect to a and apply Leibnitz rule (1.3), we get

$$\frac{dI}{da} = -2(p+1) \int_0^\infty \left(a + \frac{b}{x^2}\right) \left[(ax - \frac{b}{x})^2 + (4ab + c)\right]^{-p-2} \, dx = \frac{-(2p+1)\sqrt{\pi}\Gamma(p + \frac{1}{2})}{(4ab + c)^{2p+3} \Gamma(p+1)}$$

(4.7)

Now integrate (4.7), we get

$$I(a) = \frac{\sqrt{\pi} \Gamma(p + \frac{1}{2})}{2b(4ab + c)^{2p+1} \Gamma(p+1)} + G$$

(4.8)

Where G is constant of integration.

When $a = 0$ in (4.8) and in view of the result (4.6), we get $G = 0$, therefore (4.8) reduces to right hand side of (3.2).

We cannot apply Leibnitz rule (1.3) in the left hand side of (3.3).
The left hand side of (3.3) is denoted by

\[I = \int_0^\infty \left(a + \frac{b}{x^2} \right) \left(ax + \frac{b}{x} \right)^2 + c \right]^{-p-1} \, dx \]

\[= \int_0^\infty \left(a + \frac{b}{x^2} \right) \left(ax - \frac{b}{x} \right)^2 + (4ab + c) \right]^{-p-1} \, dx \]

\[= \frac{2}{(4ab + c)^{p+\frac{1}{2}}} \int_0^\frac{\pi}{2} \cos^2 \theta \, d\theta \]

On solving above integral with the help of (1.4), we get the right hand side of (3.3).

Or, if we multiply both sides of (3.1) by \(a \), multiply both sides of (3.2) by \(b \) and adding the resulting integrals, we can obtain (3.3).

V. ADDITIONAL INTEGRALS

Since Pochhammer’s symbol is associated with Gamma function and Gamma function is undefined for zero and negative integers, therefore arguments, numerator and denominator parameters are adjusted in such a way that following integrals are completely well defined and meaningful then without any loss of convergence, we have

\[\int_0^\infty e^{-ax-bx^2} \, dx = \frac{\sqrt{\pi}}{2\sqrt{b}} e^{\frac{a^2}{4b}} - \frac{a}{2b} _1F_1 \left[\frac{1}{2}; \frac{a^2}{4b} \right] ; \quad a \geq 0, \quad b > 0 \]

(5.1)

In view of Leibnitz rule (1.3) and Kummer’s first transformation [4,p.125(Th.42)] and using same technique, we can derive (5.1).

Using series expansions and hypergeometric forms [4,p.108(1),p.115(2,4)] of Sine,Cosine functions and ordinary Bessel function of first kind, a reduction formula for the product of two \(_0F_1[4,p.105(Q,\nu,1)] \), interchanging the order of summation and integration, using series rearrangement technique and some algebraic properties of Pochhammer’s symbol, we can derive the integrals (5.2)-(5.5) which are convergent for all finite values of parameters.

\[\int_0^t \cos(ax) J_\nu(bx) \, dx = \frac{b^\nu \Gamma(\nu+1)}{2^\nu (\nu+2)} \ _1F_1 \left[\frac{\nu+1}{2}; \frac{1}{2}; \frac{a^2x^2}{4} \right] \]

(5.2)

where \(b \neq a \) and \(\nu \neq -1 \).

\[\int_0^t \sin(ax) J_\nu(bx) \, dx = \frac{a^\nu \Gamma(\nu+2)}{2^\nu (\nu+2) (\nu+1)} \ _1F_1 \left[\frac{\nu+2}{2}; \frac{3}{2}; \frac{a^2x^2}{4} \right] \]

(5.3)

where \(b \neq a \) and \(\nu \neq -2 \).

\[\int_0^t \cos(ax) J_\nu(ax) \, dx = \frac{a^\nu \Gamma(\nu+2)}{2^\nu (\nu+2) (\nu+1)} \ _3F_4 \left[\frac{\nu+1}{2}, \frac{2\nu+1}{2}, \frac{\nu+3}{2} ; \frac{1}{2}, \nu+1, \frac{2\nu+1}{2}, \frac{\nu+3}{2} ; -a^2 t^2 \right] \]

(5.4)

where \(\nu \neq -1 \).

\[\int_0^t \sin(ax) J_\nu(ax) \, dx = \frac{a^{\nu+1} \Gamma(\nu+2)}{2^\nu (\nu+2) (\nu+1)} \ _3F_4 \left[\frac{\nu+2}{2}, \frac{2\nu+3}{4}, \frac{\nu+5}{4} ; \frac{3}{2}, \nu+1, \frac{2\nu+3}{2}, \frac{\nu+4}{2} ; -a^2 t^2 \right] \]

(5.5)

where \(\nu \neq -2 \).