Global Journal of Science Frontier Research: F Mathematics and Decision Sciences
Volume 18 Issue 2 Version 1.0 Year 2018
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Certain Results on Bicomplex Matrices

By Anjali \& Amita

Dr. B. R. Ambedkar University
Abstract- This paper begins the study of bicomplex matrices. In this paper, we have defined bicomplex matrices, determinant of a bicomplex square matrix and singular and non-singular matrices in C_{2}. We have proved that the set of all bicomplex square matrices of order n is an algebra. We have given some definitions and results regarding adjoint and inverse of a matrix in C_{2}. We have defined three types of conjugates and three types of tranjugates of a bicomplex matrix. With the help of these conjugates and tranjugates, we have also defined symmetric and skew - symmetric matrices, Hermitian and Skew - Hermitian matrices in C_{2}.

Keywords: bicomplex matrices, conjugates matrices, tranjugate matrices, Hermitian matrices, skew Hermitian matrices.

GJSFR-F Classification: MSC: 15 B 57, 30 G 35

Strictly as per the compliance and regulations of:

© 2018. Anjali \& Amita. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Certain Results on Bicomplex Matrices

Anjali ${ }^{\alpha}$ \& Amita ${ }^{\sigma}$

Abstract- This paper begins the study of bicomplex matrices. In this paper, we have defined bicomplex matrices, determinant of a bicomplex square matrix and singular and non-singular matrices in C_{2}. We have proved that the set of all bicomplex square matrices of order n is an algebra. We have given some definitions and results regarding adjoint and inverse of a matrix in C_{2}. We have defined three types of conjugates and three types of tranjugates of a bicomplex matrix. With the help of these conjugates and tranjugates, we have also defined symmetric and skew-symmetric matrices, Hermitian and Skew - Hermitian matrices in C_{2}.
Keywords: bicomplex matrices, conjugates matrices, tranjugate matrices, Hermitian matrices, skew Hermitian matrices.

I. Introduction

In 1892, Corrado Segre (1860-1924) published a paper [8] in which he treated an infinite set of Algebras whose elements he called bicomplex numbers, tricomplex numbers,...., n-complex numbers. A bicomplex number is an element of the form $\left(\mathrm{x}_{1}+\mathrm{i}_{1} \mathrm{x}_{2}\right)+\mathrm{i}_{2}\left(\mathrm{x}_{3}+\mathrm{i}_{1} \mathrm{x}_{4}\right)$, where $\mathrm{x}_{1}, \ldots, \mathrm{x}_{4}$ are real numbers, $\mathrm{i}_{1}{ }^{2}=\mathrm{i}_{2}{ }^{2}=-1$ and $\mathrm{i}_{1} \mathrm{i}_{2}=\mathrm{i}_{2} \mathrm{i}_{1}$.

Segre showed that every bicomplex number $z_{1}+i_{2} z_{2}$ can be represented as the complex combination

$$
\left(z_{1}-i_{1} z_{2}\right)\left[\frac{1+\mathrm{i}_{1} \mathrm{i}_{2}}{2}\right]+\left(z_{1}+i_{1} z_{2}\right)\left[\frac{1-\mathrm{i}_{1} \mathrm{i}_{2}}{2}\right]
$$

Srivastava [9] introduced the notations ${ }^{1} \xi$ and ${ }^{2} \xi$ for the idempotent components of the bicomplex number $\xi=\mathrm{z}_{1}+\mathrm{i}_{2} \mathrm{z}_{2}$, so that

$$
\xi={ }^{1} \varepsilon^{1+\mathrm{i}_{1} \mathrm{i}_{2}} \frac{2}{2}+{ }^{2} \zeta \frac{1-\mathrm{i}_{1} \mathrm{i}_{2}}{2}
$$

Michiji Futagawa seems to have been the first to consider the theory of functions of a bicomplex variable [2,3] in 1928 and 1932.

The hyper complex system of Ringleb [7] is more general than the Algebras; he showed in 1933 that Futagawa system is a special case of his own.
In 1953 James D. Riley published a paper [6] entitled "Contributions to theory of functions of a bicomplex variable".

Throughout, the symbols $\mathrm{C}_{2}, \mathrm{C}_{1}, \mathrm{C}_{0}$ denote the set of all bicomplex, complex and real numbers respectively.

[^0]a) Some special subset of C_{2}

We shall use notation $\mathrm{C}\left(\mathrm{i}_{1}\right), \mathrm{C}\left(\mathrm{i}_{2}\right)$ and H for the following sets. $C\left(i_{1}\right)$ is the set of complex numbers with imaginary unit i_{1}.i. e.

$$
\mathrm{C}\left(\mathrm{i}_{1}\right)=\left\{\mathrm{a}+\mathrm{i}_{1} \mathrm{~b} ; \mathrm{a}, \mathrm{~b} \in \mathrm{C}_{0}\right\}
$$

and $C\left(i_{2}\right)$ is the set of complex numbers with imaginary unit i_{2}.i. e.

$$
\mathrm{C}\left(\mathrm{i}_{2}\right)=\left\{\mathrm{a}+\mathrm{i}_{2} \mathrm{~b} ; \mathrm{a}, \mathrm{~b} \in \mathrm{C}_{0}\right\}
$$

The bicomplex number $\xi=\left(\mathrm{x}_{1}+\mathrm{i}_{1} \mathrm{x}_{2}\right)+\mathrm{i}_{2}\left(\mathrm{x}_{3}+\mathrm{i}_{1} \mathrm{x}_{4}\right)$ for which $\mathrm{x}_{2}=\mathrm{x}_{3}=0$ is called a hyperbolic number.
The set of all hyperbolic numbers is denoted by H and defined as

$$
\mathrm{H}=\left\{\mathrm{a}+\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{~b} ; \mathrm{a}, \mathrm{~b} \in \mathrm{C}_{0}\right\}
$$

b) Idempotent elements in C_{2}

There are exactly four idempotent elements in C_{2}. Out of these, 0 and 1 are the trivial idempotent elements and two nontrivial idempotent elements denoted by e_{1} and e_{2} which are defined as

$$
\mathrm{e}_{1}=\frac{1+\mathrm{i}_{1} \mathrm{i}_{2}}{2} \text { and } \mathrm{e}_{2}=\frac{1-\mathrm{i}_{1} \mathrm{i}_{2}}{2}
$$

Obviously $\left(e_{1}\right)^{n}=e_{1},\left(e_{2}\right)^{n}=e_{2}$

$$
\mathrm{e}_{1}+\mathrm{e}_{2}=1, \mathrm{e}_{1} \cdot \mathrm{e}_{2}=0
$$

C_{1} is a field but C_{2} is not a field, since C_{2} has divisor of zero for example $e_{1} e_{2}=$ 0 neither e_{1} is zero nor e_{2} is zero.

Every bicomplex number ξ has unique idempotent representation as complex combination of e_{1} and e_{2} as follows

$$
\xi=z_{1}+i_{2} z_{1}=\left(z_{1}-i_{1} z_{2}\right) e_{1}+\left(z_{1}+i_{1} z_{2}\right) e_{2}
$$

The complex numbers $\left(z_{1}-i_{1} z_{2}\right)$ and $\left(z_{1}+i_{1} z_{2}\right)$ are called idempotent component of ξ and are denoted by ${ }^{1} \zeta$ and ${ }^{2} \xi$ respectively (cf. Srivastava [9]).
Thus $\xi={ }^{1} \zeta \mathrm{e}_{1}+{ }^{2} \zeta \mathrm{e}_{2}$
There are infinite numbers of element in C_{2} which do not possess multiplicative inverse. A bicomplex number $\xi=z_{1}+i_{2} z_{1}$ is singular if and only if $\left|z_{1}^{2}+z_{2}^{2}\right|=0$ The set of all singular elements in C_{2} is denoted by O_{2}.

Evidently a nonzero bicomplex number ξ is singular if and only if either ${ }^{1} \xi=0$ or ${ }^{2} \xi=0$ that is if and only if it is a complex multiple of either e_{1} or e_{2}.

c) Algebraic properties of idempotent components

The idempotent representation is perfectly compatible with the algebraic structure of C_{2} in the following way
For all ξ, η in C_{2}

$$
\begin{aligned}
\xi \pm \eta & =\left({ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2}\right) \pm\left({ }^{1} \eta \mathrm{e}_{1}+{ }^{2} \eta \mathrm{e}_{2}\right) \\
& =\left({ }^{1} \xi \pm{ }^{1} \eta\right) \mathrm{e}_{1}+\left({ }^{2} \xi \pm{ }^{2} \eta\right) e_{2}
\end{aligned}
$$

so that

$$
\begin{aligned}
{ }^{1}(\xi \pm \eta) & ={ }^{1} \xi \pm{ }^{1} \eta \text { and }{ }^{2}(\xi \pm \eta)={ }^{2} \xi \pm{ }^{2} \eta \\
\alpha \xi & =\alpha\left({ }^{1} \xi e_{1}+{ }^{2} \xi e_{2}\right) \\
& =\alpha\left({ }^{1} \xi\right) e_{1}+\alpha\left({ }^{2} \xi\right) e_{2}, \forall \alpha \in C_{1}
\end{aligned}
$$

so that

$$
\begin{aligned}
{ }^{1}(\alpha \xi) & =\alpha^{1} \xi \text { and }{ }^{2}(\alpha \xi)=\alpha^{2} \xi \text { for } \alpha \in C_{1} \\
\xi \eta & =\left({ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2}\right) \cdot\left({ }^{1} \eta \mathrm{e}_{1}+{ }^{2} \eta \mathrm{e}_{2}\right) \\
& =\left({ }^{1} \xi^{1} \eta\right) \mathrm{e}_{1}+\left({ }^{2} \xi^{2} \eta\right) \mathrm{e}_{2},
\end{aligned}
$$

$$
{ }^{1}(\xi \eta)={ }^{1} \xi^{1} \eta \text { and }{ }^{2}(\xi \eta)={ }^{2} \xi^{2} \eta
$$

$$
\frac{\xi}{\eta}=\left({ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2}\right) /\left({ }^{1} \eta \mathrm{e}_{1}+{ }^{2} \eta \mathrm{e}_{2}\right)
$$

$$
=\left({ }^{1} \xi /{ }_{1} \eta\right) \mathrm{e}_{1}+\left({ }^{2} \xi /{ }^{2} \eta\right) \mathrm{e}_{2}, \quad \text { provided } \eta \notin \mathrm{O}_{2}
$$

so that

$$
(\xi / \eta)={ }^{1} \xi /{ }^{1} \eta \text { and }{ }^{2}(\xi / \eta)={ }^{2} \xi / 2 \eta
$$

d) Norm in $C_{2}[5]$

The norm of a bicomplex number

$$
\begin{aligned}
\xi & =\mathrm{z}_{1}+\mathrm{i}_{2} \mathrm{z}_{2}=\mathrm{x}_{1}+\mathrm{i}_{1} \mathrm{x}_{2}+\mathrm{i}_{2} \mathrm{x}_{3}+\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{x}_{4}={ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2} \text { is defined as } \\
\|\xi\| & =\left(\mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}{ }^{2}+\mathrm{x}_{3}{ }^{2}+\mathrm{x}_{4}{ }^{2}\right)^{1 / 2} \\
& =\left(\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}\right)^{1 / 2} \\
& =\sqrt{\frac{|1-\xi|^{2}+\left.\left.\right|^{2} \xi\right|^{2}}{2}}
\end{aligned}
$$

C_{2} becomes a modified Banach algebra, in the sense that $\xi_{\xi, \eta \in C_{2}}$, we have, In general $\|\xi \cdot \eta\| \leq \sqrt{2}\|\xi\|\|\eta\|$

e) Conjugates of a bicomplex number

Analogous to the concept of conjugate of a complex number, conjugates of a bicomplex number are also defined. As a bicomplex number is four dimensional, different types of conjugate arise.

In bicomplex space C_{2}, every number ξ possesses three types of conjugates. The i_{1} conjugate, i_{2} conjugate and $\mathrm{i}_{2} \mathrm{i}_{2}$ conjugate of $\xi=\mathrm{z}_{1}+\mathrm{i}_{2} \mathrm{z}_{2}=\mathrm{x}_{1}+\mathrm{i}_{1} \mathrm{x}_{2}+\mathrm{i}_{2} \mathrm{x}_{3}+\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{x}_{4}={ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi$ e_{2} are denoted by $\bar{\xi}, \xi^{\sim}$ and $\xi^{\#}$ respectively, therefore

$$
\begin{aligned}
\bar{\xi} & =\left(x_{1}-i_{1} x_{2}\right)+i_{2}\left(x_{3}-i_{1} x_{4}\right) \\
& =\left(\bar{z}_{1}+i_{2} \overline{\bar{z}}_{2}\right) \\
& =\left(\overline{{ }^{2} \xi} e_{1}+\overline{{ }_{\xi}} e_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\xi^{\sim} & =\left(x_{1}+i_{1} x_{2}\right)-i_{2}\left(x_{3}+i_{1} x_{4}\right) \\
& =\left(z_{1}-i_{2} z_{2}\right) \\
& =\left({ }^{2} \xi e_{1}+{ }_{\xi}{ }^{1} e_{2}\right) \\
\xi^{\#} & =\left(x_{1}-i_{1} x_{2}\right)-i_{2}\left(x_{3}-i_{1} x_{4}\right) \\
& =\left(\overline{\bar{z}}_{1}-i_{2} \bar{z}_{2}\right) \\
& =\left(\overline{{ }^{\xi}} e_{1}+\overline{ }^{2} \xi e_{2}\right)
\end{aligned}
$$

Where $1 \leq \mathrm{p} \leq \mathrm{m}$ and $1 \leq \mathrm{q} \leq \mathrm{n}$
Since every bicomplex number ξ has unique idempotent representation as complex combination of e_{1} and e_{2} as follows

$$
\xi=\mathrm{z}_{1}+\mathrm{i}_{2} \mathrm{z}_{2}=\left(\mathrm{z}_{1}-\mathrm{i}_{1} \mathrm{z}_{2}\right) \mathrm{e}_{1}+\left(\mathrm{z}_{1}+\mathrm{i}_{1} \mathrm{z}_{2}\right) \mathrm{e}_{2}
$$

Therefore every bicomplex matrices $\mathrm{A}=\left[\xi_{m n}\right]_{\mathrm{m} \times \mathrm{n}}$ can be expressed uniquely as ${ }^{1} \mathrm{Ae}_{1}+{ }^{2} \mathrm{Ae}_{2}$ such that ${ }^{1} \mathrm{~A}=\left[\mathrm{z}_{\mathrm{m}}\right]_{\mathrm{m} \times \mathrm{n}}$ and ${ }^{2} \mathrm{~A}=\left[\mathrm{w}_{\mathrm{m}}\right]_{\mathrm{m} \times \mathrm{n}}$ are complex matrices.

2.1.2 Bicomplex square matrices

A bicomplex matrix in which the number of rows is equal to the number of columns is called a bicomplex square matrix. i.e.

$$
\mathrm{A}=\left[\begin{array}{cccc}
\xi_{11} & \xi_{12} & \ldots . . & \xi_{1 n} \\
\xi_{21} & \xi_{22} & \ldots . . & \xi_{2 n} \\
\ldots . & \ldots . . & \ldots . . & \ldots . . \\
\xi_{n 1} & \xi_{n 2} & \ldots . & \xi_{n n}
\end{array}\right] ; \xi_{p q} \in \mathrm{C}_{2} ; \mathrm{p}, \mathrm{q}=1,2, \ldots, \mathrm{n}
$$

2.1.3 Bicomplex diagonal matrices

A bicomplex square matrix A is called a diagonal matrix if all its non-diagonal elements are zero i.e.

$$
\mathrm{A}=\left[\begin{array}{cccc}
\xi_{11} & 0 & \ldots . . & 0 \\
0 & \xi_{22} & \ldots . . & 0 \\
\ldots \ldots & \ldots \ldots & \ldots . . & \ldots . . \\
0 & 0 & \ldots . . & \xi_{n n}
\end{array}\right], \quad \xi_{p q} \in \mathrm{C}_{2}
$$

2.1.4 Determinant of a bicomplex matrix

Let $\mathrm{A}=\left[\xi_{i j}\right]_{n \times n}$ be a bicomplex square matrix of order n , where n is some positive integer. The determinant of A, is defined as

$$
\begin{aligned}
\operatorname{det} A=|A| & =\left|\left[\xi_{i j}\right]\right|, \xi_{i j} \in \mathrm{C}_{2} \\
\operatorname{det} A=|A| & =\sum_{\sigma \in S_{n}} \operatorname{Sig} \cdot(\sigma) \prod_{i=1}^{n} \xi_{i \sigma(i)}
\end{aligned}
$$

Where S_{n} is the group of all permutation on ' n ' symbols.

2.1.5 Transpose of a bicomplex matrix

 obtained from ' A ' by changing its rows into columns and its columns into rows is called transpose of ' A ' and is denoted by A^{T}.

2.1.6 Cofactor and adjoint matrix of a matrix in C_{2}

Let $\mathrm{A}=\left[\xi_{i j}\right]_{n \times n}$ be a bicomplex square matrix of order n then cofactor of the entry ζ_{ij} is defined as $(-1)^{\mathrm{i}+\mathrm{j}} \times$ the determinant obtained by leaving the row and the column(In the matrix A) passing through the entry $\xi_{\mathrm{ij}}=\eta_{i j}$ (say).

Then the matrix $\left[\eta_{i j}\right]_{n \times n}$ is defined as the cofactor matrix of A and the transpose of cofactor matrix of A is known as adjoint matrix of A. i.e. $\operatorname{Adj} \mathrm{A}=\left[\eta_{i j}\right]^{T}{ }_{n \times n}$

2.1.7 Bicomplex singular and non-singular matrix

A bicomplex Square matrix is said to be non-singular if $|A| \notin O_{2}$ (set of all singular element in C_{2}).
and If $|A| \in O_{2}$ then it is called singular matrix.
b) Algebraic structure of bicomplex Matrices

Let S be the set of all bicomplex square matrices of order n. Define binary compositions over S called addition " + ", scalar multiplication "." and multiplication " \times " as follows:

$$
\begin{aligned}
\text { LetA } & =\left[\begin{array}{cccc}
\xi_{11} & \xi_{12} & \ldots . . & \xi_{1 n} \\
\xi_{21} & \xi_{22} & \ldots . & \xi_{2 n} \\
\ldots . . & \ldots . . & \ldots . & \ldots . . \\
\xi_{n 1} & \xi_{n 2} & \ldots . & \xi_{n n}
\end{array}\right] \text { and } \\
\mathrm{B} & =\left[\begin{array}{cccc}
\eta_{11} & \eta_{12} & \ldots . & \eta_{1 n} \\
\eta_{21} & \eta_{22} & \ldots . . & \eta_{2 n} \\
\ldots . . & \ldots . . & \ldots . & \ldots . . \\
\eta_{n 1} & \eta_{n 2} & \ldots . . & \eta_{n n}
\end{array}\right]
\end{aligned}
$$

be the arbitrary member of S and $\alpha \in F$, where F is either field of real numbers or complex numbers.

$$
\begin{gathered}
\mathrm{A}+\mathrm{B}=\left[\begin{array}{cccc}
\xi_{11}+\eta_{11} & \xi_{12}+\eta_{12} & \ldots . . & \xi_{1 n}+\eta_{1 n} \\
\xi_{21}+\eta_{21} & \xi_{22}+\eta_{22} & \ldots . . & \xi_{2 n}+\eta_{2 n} \\
\ldots \ldots . & \ldots . . & \ldots . & \ldots . . \\
\xi_{n 1}+\eta_{n 1} & \xi_{n 2}+\eta_{n 2} & \ldots . . & \xi_{n n}+\eta_{n n}
\end{array}\right] \\
\alpha \cdot A=\left[\begin{array}{cccc}
\alpha \xi_{11} & \alpha \xi_{12} & \ldots . . & \alpha \xi_{1 n} \\
\alpha \xi_{21} & \alpha \xi_{22} & \ldots . . & \alpha \xi_{2 n} \\
\ldots . . & \ldots . . & \ldots . . & \ldots . . \\
\alpha \xi_{1 n} & \alpha \xi_{2 n} & \ldots . & \alpha \xi_{n n}
\end{array}\right] \text { and } A \times B=\left[\begin{array}{cccc}
\xi_{11} \eta_{11}+\ldots .+\xi_{1 n} \eta_{n 1} & --- & \xi_{11} \eta_{1 n}+\ldots . .+\xi_{1 n} \eta_{n n} \\
\xi_{21} \eta_{11}+\ldots .+\xi_{2 n} \eta_{n 1} & --- & \xi_{21} \eta_{1 n}+\ldots .+\xi_{2 n} \eta_{n n} \\
\xi_{n 1} \eta_{11}+\ldots .+\xi_{n n} \eta_{n 1} & --- & \xi_{n 1} \eta_{1 n}+\ldots .+\xi_{n n} \eta_{n n}
\end{array}\right]
\end{gathered}
$$

2.2.1 Theorem: The set of all bicomplex square matries i.e "S" forms an algebra.

Proof:

a. Additive abelian group structure

- Associativity:

Let $\mathrm{A}=\left[\xi_{i j}\right]_{n \times n}, \mathrm{~B}=\left[\eta_{i j}\right]_{n \times n}$ and $\mathrm{C}=\left[\varsigma_{i j}\right]_{n \times n}$ be the member of S and $\alpha, \beta \in F$ then

$$
\begin{aligned}
& A+(B+C)=\left[\begin{array}{ccc}
\xi_{11}+\left(\eta_{11}+\varsigma_{11}\right) & \ldots \ldots \ldots . & \xi_{1 n}+\left(\eta_{1 n}+\varsigma_{1 n}\right) \\
\xi_{21}+\left(\eta_{21}+\varsigma_{21}\right) & \ldots \ldots \ldots & \xi_{2 n}+\left(\eta_{2 n}+\varsigma_{2 n}\right) \\
\ldots \ldots \ldots . & \ldots \ldots . . & \ldots \ldots . . \\
\xi_{n 1}+\left(\eta_{n 1}+\varsigma_{n 1}\right) & \ldots \ldots \ldots & \xi_{n n}+\left(\eta_{n n}+\varsigma_{n n}\right)
\end{array}\right] \\
& (A+B)+C=\left[\begin{array}{ccc}
\left(\xi_{11}+\eta_{11}\right)+\varsigma_{11} & \ldots \ldots \ldots & \left(\xi_{1 n}+\left(\eta_{1 n}\right)+\varsigma_{1 n}\right. \\
\left(\xi_{21}+\eta_{21}\right)+\varsigma_{21} & \ldots \ldots \ldots & \left(\xi_{2 n}+\eta_{2 n}\right)+\varsigma_{2 n} \\
\ldots \ldots . & \ldots \ldots . . & \ldots \ldots \ldots . \\
\left(\xi_{n 1}+\eta_{n 1}\right)+\varsigma_{n 1} & \ldots \ldots . & \left(\xi_{n n}+\eta_{n n}\right)+\varsigma_{n n}
\end{array}\right]
\end{aligned}
$$

Since C_{2} is an algebra
Therefore $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
Identity: $\forall \mathrm{A} \in \mathrm{S} \exists$ null matrix " 0 " $\in \mathrm{S}$ then $\mathrm{A}+0=\mathrm{A}$ i.e

So 0 is the additive identity.

- Inverse:

$\forall \mathrm{A} \in \mathrm{S} \exists-\mathrm{A} \in \mathrm{S}$ such that-A $+\mathrm{A}=0$ i.e.

Therefore " -A " is the additive inverse of A .

- Commutative:

Since

$$
\mathrm{A}+\mathrm{B}=\left[\begin{array}{cccc}
\xi_{11}+\eta_{11} & \xi_{12}+\eta_{12} & \ldots . . & \xi_{1 n}+\eta_{1 n} \\
\xi_{21}+\eta_{21} & \xi_{22}+\eta_{22} & \ldots . & \xi_{2 n}+\eta_{2 n} \\
\ldots \ldots . . & \ldots . . & \cdots \ldots & \ldots . . \\
\xi_{n 1}+\eta_{n 1} & \xi_{n 2}+\eta_{n 2} & \cdots . & \xi_{n n}+\eta_{n n}
\end{array}\right]
$$

And

$$
\mathrm{B}+\mathrm{A}=\left[\begin{array}{cccc}
\eta_{11}+\xi_{11} & \eta_{12}+\xi_{12} & \ldots . & \eta_{1 n}+\xi_{1 n} \\
\eta_{21}+\xi_{21} & \eta_{22}+\xi_{22} & \ldots . & \eta_{2 n}+\xi_{2 n} \\
\ldots \ldots . & \ldots \ldots . . & \ldots . . & \ldots . \\
\eta_{n 1}+\xi_{n 1} & \eta_{n 2}+\xi_{n 2} & \ldots . & \eta_{n n}+\xi_{n n}
\end{array}\right]
$$

Therefore $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ as C_{2} is an algebra.
So S is abelian group under addition
b. Ring structure

- Closure:

Since

$$
A \times B=\left[\begin{array}{ccc}
\xi_{11} \eta_{11}+\ldots . .+\xi_{1 n} \eta_{n 1} & -- & \xi_{11} \eta_{1 n}+\ldots . .+\xi_{1 n} \eta_{n n} \\
\xi_{21} \eta_{11}+\ldots .+\xi_{2 n} \eta_{n 2} & --- & \xi_{21} \eta_{1 n}+\ldots .+\xi_{2 n} \eta_{n n} \\
--- & --- & --- \\
\xi_{n 1} \eta_{11}+\ldots .+\xi_{n n} \eta_{n 1} & --- & \xi_{n 1} \eta_{1 n}+\ldots .+\xi_{n n} \eta_{n n}
\end{array}\right]
$$

Therefore it is evident that $\mathrm{A} \times \mathrm{B} \in \mathrm{S}$
Therefore S is closed under multiplication

- Associativity:
$\forall \mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{S}$
Let A $=\left[\xi_{i j}\right]_{n \times n}, \mathrm{~B}=\left[\eta_{i j}\right]_{n \times n}$ and $\mathrm{C}=\left[s_{i j}\right]_{n \times n}$
The $\mathrm{i}^{\text {th }} \mathrm{j}^{\text {th }}$ entry of $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=\left[\mathrm{i}^{\text {th }}\right.$ row of $\left.(\mathrm{A} \times \mathrm{B})\right] \times\left[\mathrm{j}^{\text {th }}\right.$ column of C$]$
$=\left[\mathrm{i}^{\text {th }}\right.$ row of A$] \times \mathrm{B} \times\left[\mathrm{j}^{\text {th }}\right.$ column of C$]$
Now the $\mathrm{i}^{\text {th }} \mathrm{j}^{\text {th }}$ entry of $\mathrm{A} \times(\mathrm{B} \times \mathrm{C})=\left[\mathrm{i}^{\text {th }}\right.$ row of A$] \times\left[\mathrm{j}^{\text {th }}\right.$ column of $\left.(\mathrm{B} \times \mathrm{C})\right]$
$=\left[\mathrm{i}^{\text {th }}\right.$ row of A$] \times \mathrm{B} \times\left[\mathrm{j}^{\text {th }}\right.$ column of C$]$
Therefore the $i^{\text {th }} j^{\text {th }}$ entry of $(A \times B) \times C=i^{\text {th } j^{\text {th }}}$ entry of $\mathrm{A} \times(\mathrm{B} \times \mathrm{C})$
Hence $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=\mathrm{A} \times(\mathrm{B} \times \mathrm{C})$

Distribution law:

We can easily show that

$$
(\mathrm{A}+\mathrm{B}) \times \mathrm{C}=\mathrm{A} \times \mathrm{C}+\mathrm{B} \times \mathrm{C} \text { and } \mathrm{A} \times(\mathrm{B}+\mathrm{C})=\mathrm{A} \times \mathrm{B}+\mathrm{A} \times \mathrm{C}
$$

c. Linear space structure

$$
\begin{align*}
\alpha .(A+B) & =\alpha \cdot\left[\begin{array}{cccc}
\xi_{11}+\eta_{11} & \xi_{12}+\eta_{12} & \ldots . . & \xi_{1 n}+\eta_{1 n} \\
\xi_{21}+\eta_{21} & \xi_{22}+\eta_{22} & \ldots . & \xi_{2 n}+\eta_{2 n} \\
\ldots \ldots . & \ldots . . & \ldots . . & \ldots . \\
\xi_{n 1}+\eta_{n 1} & \xi_{n 2}+\eta_{n 2} & \ldots . . & \xi_{n n}+\eta_{n n}
\end{array}\right] \tag{1}\\
& =\left[\begin{array}{cccc}
\alpha\left(\xi_{11}+\eta_{11}\right) & \alpha\left(\xi_{12}+\eta_{12}\right) & \ldots . . & \alpha\left(\xi_{1 n}+\eta_{1 n}\right) \\
\alpha\left(\xi_{21}+\eta_{21}\right) & \alpha\left(\xi_{22}+\eta_{22}\right) & \ldots . . & \alpha\left(\xi_{2 n}+\eta_{2 n}\right) \\
\ldots . . & \ldots . . & \ldots . . & \ldots . . \\
\alpha\left(\xi_{n 1}+\eta_{n 1}\right) & \alpha\left(\xi_{n 2}+\eta_{n 2}\right) & \ldots . . & \alpha\left(\xi_{n n}+\eta_{n n}\right)
\end{array}\right]=\left[\begin{array}{cccc}
\alpha \xi_{11} & \alpha \xi_{12} & \ldots . . & \alpha \xi_{1 n} \\
\alpha \xi_{21} & \alpha \xi_{22} & \ldots . . & \alpha \xi_{2 n} \\
\ldots . . & \ldots . . & \ldots . . & \ldots . \\
\alpha \xi_{n 1} & \alpha \xi_{n 2} & \ldots . . & \alpha \xi_{n n}
\end{array}\right]+
\end{align*}
$$

$$
\left[\begin{array}{cccc}
\alpha \eta_{11} & \alpha \eta_{12} & \ldots . . & \alpha \eta_{1 n} \\
\alpha \eta_{21} & \alpha \eta_{22} & \ldots . & \alpha \eta_{2 n} \\
\ldots \ldots . & \ldots . . & \ldots . . & \ldots . . \\
\alpha \eta_{n 1} & \alpha \eta_{n 2} & \ldots . & \eta_{n n}
\end{array}\right]=\alpha .\left[\begin{array}{cccc}
\xi_{11} & \xi_{12} & \ldots . . & \xi_{1 n} \\
\xi_{21} & \xi_{22} & \ldots . . & \xi_{2 n} \\
\ldots . . & \ldots . . & \ldots . . & \ldots . . \\
\xi_{n 1} & \xi_{n 2} & \ldots . . & \xi_{n n}
\end{array}\right]+\alpha \cdot\left[\begin{array}{cccc}
\eta_{11} & \eta_{12} & \ldots . . & \eta_{1 n} \\
\eta_{21} & \eta_{22} & \ldots . . & \eta_{2 n} \\
\ldots . . & \ldots . . & \ldots . . & \ldots . . \\
\eta_{n 1} & \eta_{n 2} & \ldots . . & \eta_{n n}
\end{array}\right]
$$

Therefore $\alpha \cdot(A+B)=\alpha \cdot A+\alpha \cdot B$

$$
(\alpha \beta) \cdot A=(\alpha \beta) \cdot\left[\begin{array}{cccc}
\xi_{11} & \xi_{12} & - & \xi_{1 n} \tag{2}\\
\xi_{21} & \xi_{22} & - & \xi_{2 n} \\
- & - & - & - \\
\xi_{n 1} & \xi_{n 2} & - & \xi_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
(\alpha \beta) \xi_{11} & (\alpha \beta) \xi_{12} & - & (\alpha \beta) \xi_{1 n} \\
(\alpha \beta) \xi_{21} & (\alpha \beta) \xi_{22} & - & (\alpha \beta) \xi_{2 n} \\
- & - & - & - \\
(\alpha \beta) \xi_{n 1} & (\alpha \beta) \xi_{n 2} & - & (\alpha \beta) \xi_{n n}
\end{array}\right](\alpha \beta) \cdot A=\alpha \cdot\left[\begin{array}{cccc}
\beta \xi_{11} & \beta \xi_{12} & -\beta \xi_{1 n} \\
\beta \xi_{21} & \beta \xi_{22} & - & \beta \xi_{2 n} \\
- & - & - & - \\
\beta \xi_{1 n} & \beta \xi_{2 n} & - & \beta \xi_{n n}
\end{array}\right]
$$

Therefore $(\alpha \beta) \cdot A=\alpha \cdot(\beta \cdot A)$

$$
(\alpha+\beta) \cdot A=(\alpha+\beta) \cdot\left[\begin{array}{cccc}
\xi_{11} & \xi_{12} & \ldots . . & \xi_{1 n} \tag{3}\\
\xi_{21} & \xi_{22} & \ldots . . & \xi_{2 n} \\
\ldots \ldots . & \ldots . . & \ldots . & \ldots . \\
\xi_{n 1} & \xi_{n 2} & \ldots . & \xi_{n n}
\end{array}\right]=\alpha \cdot\left[\begin{array}{cccc}
\xi_{11} & \xi_{12} & \ldots . & \xi_{1 n} \\
\xi_{21} & \xi_{22} & \ldots . & \xi_{2 n} \\
\ldots . & \ldots . & \ldots & \ldots . \\
\xi_{n 1} & \xi_{n 2} & \ldots . & \xi_{n n}
\end{array}\right]+\beta \cdot\left[\begin{array}{llll}
\xi_{11} & \xi_{12} & \ldots . . & \xi_{1 n} \\
\xi_{21} & \xi_{22} & \ldots . & \xi_{2 n} \\
\ldots . . & \ldots . & \ldots . & \ldots . . \\
\xi_{n 1} & \xi_{n 2} & \ldots . & \xi_{n n}
\end{array}\right]
$$

Therefore $(\alpha+\beta) . A=\alpha \cdot A+\beta . A$
(4) It is evident that $1 . A=A$ for all A in S and $1 \in F$
d. Consistency between multiplication and scalar multiplication

$$
\begin{gathered}
\alpha \cdot(\mathrm{A} \times \mathrm{B})=(\boldsymbol{\alpha} \cdot \mathrm{A}) \times \mathrm{B}=\mathrm{A} \times(\boldsymbol{\alpha} \cdot \mathrm{B}) \\
\alpha \cdot(\mathrm{A} \times \mathrm{B})=\alpha \cdot \\
\left(\left[\begin{array}{cccc}
\xi_{11} & \xi_{12} & \ldots . & \xi_{1 n} \\
\xi_{21} & \xi_{22} & \ldots . & \xi_{2 n} \\
\ldots . . & \ldots . & \ldots . & \ldots . \\
\xi_{n 1} & \xi_{n 2} & \ldots . & \xi_{n n}
\end{array}\right] \times\left[\begin{array}{cccc}
\eta_{11} & \eta_{12} & \ldots . & \eta_{1 n} \\
\eta_{21} & \eta_{22} & \ldots . & \eta_{2 n} \\
\ldots . . & \ldots . . & \ldots . & \ldots . . \\
\eta_{1 n} & \eta_{2 n} & \ldots . . & \eta_{n n}
\end{array}\right]\right\}
\end{gathered}
$$

$$
\alpha .(A \times B)=\alpha .\left[\begin{array}{ccc}
\xi_{11} \eta_{11}+\ldots . .+\xi_{1 n} \eta_{n 1} & ---\xi_{11} \eta_{1 n}+\ldots . .+\xi_{1 n} \eta_{n n} \\
\xi_{21} \eta_{11}+\ldots . .+\xi_{2 n} \eta_{n 2} & -- & \xi_{21} \eta_{1 n}+\ldots .+\xi_{2 n} \eta_{n n} \\
--- & --- & --- \\
\xi_{n 1} \eta_{11}+\ldots . .+\xi_{n n} \eta_{n 1} & ---\xi_{n 1} \eta_{1 n}+\ldots .+\xi_{n n} \eta_{n n}
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\alpha\left(\xi_{11} \eta_{11}\right)+\ldots . .+\alpha\left(\xi_{1 n} \eta_{n 1}\right) & --- & \alpha\left(\xi_{11} \eta_{1 n}\right)+\ldots . .+\alpha\left(\xi_{1 n} \eta_{n n}\right) \\
\alpha\left(\xi_{21} \eta_{11}\right)+\ldots . .+\alpha\left(\xi_{2 n} \eta_{n 2}\right) & --- & \alpha\left(\xi_{21} \eta_{1 n}\right)+\ldots .+\alpha\left(\xi_{2 n} \eta_{n n}\right) \\
--- & --- & --- \\
\alpha\left(\xi_{n 1} \eta_{11}\right)+\ldots .+\alpha\left(\xi_{n n} \eta_{n 1}\right) & --- & \alpha\left(\xi_{n 1} \eta_{1 n}\right)+\ldots .+\alpha\left(\xi_{n n} \eta_{n n}\right)
\end{array}\right]
$$

Since C_{2} is an algebra
Therefore $\alpha .(A \times B)=(\alpha . A) \times B=A \times(\alpha . B)$
Hence it proves that S is an algebra.
2.2.2 Theorem: Let $\mathrm{A}=\left[\xi_{\mathrm{i}}\right]_{\mathrm{nxn}}$ be a bicomplex square matrix then $\operatorname{det} \mathrm{A}=\left(\operatorname{det}^{1} \mathrm{~A}\right)$ $\mathrm{e}_{1}+\left(\operatorname{det}^{2} \mathrm{~A}\right) \mathrm{e}_{2}$.

Proof:

Let

$$
\mathrm{A}=\left[\begin{array}{cccc}
\xi_{11} & \xi_{12} & \ldots . . & \xi_{1 n} \\
\xi_{21} & \xi_{22} & \ldots . & \xi_{2 n} \\
\ldots . . & \ldots . . & \ldots . & \ldots . . \\
\xi_{n 1} & \xi_{n 2} & \ldots . & \xi_{n n}
\end{array}\right]
$$

From 2.1.4,

$$
\begin{aligned}
|A| & =\left\lvert\,\left[\begin{array}{cccc}
\xi_{11} & \xi_{12} & \ldots . . & \xi_{1 n} \\
\xi_{21} & \xi_{22} & \ldots . . & \xi_{2 n} \\
\ldots . . & \ldots . . & \ldots . & \ldots . . \\
\xi_{n 1} & \xi_{n 2} & \ldots . & \xi_{n n}
\end{array}\right] .\right. \\
\therefore \operatorname{det} A & =|A|=\sum_{\sigma \in S_{n}} \operatorname{Sig} \cdot(\sigma) \prod_{i=1}^{n} \xi_{i \sigma(i)} \\
& =\left[\sum_{\sigma \in S_{n}} \operatorname{Sig} \cdot(\sigma) \prod_{i=1}^{n}{ }^{1} \xi_{i \sigma(i)}\right] e_{1}+\left[\sum_{\sigma \in S_{n}} \operatorname{Sig} \cdot(\sigma) \prod_{i=1}^{n}{ }^{2} \xi_{i \sigma(i)}\right] e_{2}
\end{aligned}
$$

$$
\text { As } \xi \cdot \eta=\left({ }^{1} \xi^{1} \eta\right) e_{1}+\left({ }^{2} \xi^{2} \eta\right) e_{2} \text { and } \xi+\eta=\left({ }^{1} \xi+{ }^{1} \eta\right) e_{1}+\left({ }^{2} \xi+{ }^{2} \eta\right) e_{2}
$$

Since

$$
\operatorname{det}{ }^{1} \mathrm{~A}=\left|\left[{ }^{1} \xi_{i j}\right]_{n \times n}\right|
$$

$$
=\left[\sum_{\sigma \in S_{n}} \operatorname{Sig} \cdot(\sigma) \prod_{i=1}^{n}{ }^{1} \xi_{i \sigma(i)}\right]
$$

And
P

Suppose

$$
\mathrm{A}=\left[\begin{array}{cccc}
\xi_{11} & \xi_{12} & \cdots . & \xi_{1 n} \\
\xi_{21} & \xi_{22} & \cdots & \xi_{2 n} \\
\cdots \ldots & \ldots & \ldots & \cdots . \\
\xi_{n 1} & \xi_{n 2} & \cdots & \xi_{n n}
\end{array}\right]
$$

From 2.2.2,
$\operatorname{det} \mathrm{A}=\left(\operatorname{det}^{\mathrm{A}} \mathrm{A}\right) \mathrm{e}_{1}+\left(\operatorname{det}^{2} \mathrm{~A}\right) \mathrm{e}_{2}$
since $\operatorname{det} \mathrm{A}$ is non-singular
therefore $\operatorname{det} \mathrm{A}=\left[\left(\operatorname{det}^{1} \mathrm{~A}\right) \mathrm{e}_{1}+\left(\operatorname{det}^{2} \mathrm{~A}\right) \mathrm{e}_{2}\right] \notin \mathrm{O}_{2}$
(Since $\left({ }^{1} \xi e_{1}+{ }^{2} \xi e_{2}\right) \notin O_{2}$ then ${ }^{1} \xi e_{1}$ and ${ }^{2} \xi e_{2}$ both are non-zero)
Hence $\left|{ }^{1} A\right| \neq 0$ and $\left|{ }^{2} A\right| \neq 0$
2.2.4 Theorem: Let A be a bicomplex matrix then $\mathrm{A}^{\mathrm{T}}={ }^{1} \mathrm{~A}^{\mathrm{T}} \mathrm{e}_{1}+{ }^{2} \mathrm{~A}^{\mathrm{T}} \mathrm{e}_{2}$.

Proof:
Let $\mathrm{A}=\left[\xi_{\mathrm{i} j}\right]_{\mathrm{mxn}}$ be a bicomplex matrix then

$$
\begin{aligned}
& A^{T}=\left[\begin{array}{cccc}
\xi_{11} & \xi_{21} & \ldots . & \xi_{m 1} \\
\xi_{12} & \xi_{22} & \ldots . & \xi_{m 2} \\
\cdots . . & \ldots . & \ldots . & \ldots . \\
\xi_{1 n} & \xi_{2 n} & \ldots . & \xi_{m n}
\end{array}\right] \\
& A^{T}=\left[\begin{array}{cccc}
1_{11} & \xi_{\xi_{21}} & \ldots . & 1_{\xi_{m 1}} \\
1 \xi_{12} & 1_{\xi_{22}} & \ldots . & \xi_{m 2} \\
\ldots \ldots . & \ldots . & \ldots . & \ldots . \\
\xi_{1 n} & 1_{\xi_{2 n}} & \ldots . & 1_{\xi m n}
\end{array}\right] e_{1}+
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
2 \xi_{11} & 2 \xi_{21} & \ldots . . & 2 \xi_{m 1} \\
2 \xi_{12} & 2 \xi_{22} & \ldots . . & 2 \xi_{m 2} \\
\ldots . & \ldots . & \ldots . & \ldots . \\
2 \xi_{1 n} & 2 \xi_{2 n} & \ldots & 2 \xi_{m n}
\end{array}\right] e_{2}
$$

Therefore $\mathrm{A}^{\mathrm{T}}={ }^{1} \mathrm{~A}^{\mathrm{T}} \mathrm{e}_{1}+{ }^{2} \mathrm{~A}^{\mathrm{T}} \mathrm{e}_{2}$
2.2.5 Theorem: Let A be a bicomplex square matrix then cofactor matrix of $\mathrm{A}=$ (cofactor matrix of $\left.{ }^{1} A\right) e_{1}+\left(\right.$ cofactor matrix of $\left.{ }^{2} A\right) e_{2}$.
Proof:
Let $A=\left[\zeta_{\mathrm{ij}}\right]_{\mathrm{nxn}}$ be a bicomplex square matrix then
${ }^{1} \mathrm{~A}=\left[{ }^{1} \zeta_{\mathrm{i} j}\right]_{\mathrm{n} \times \mathrm{n}}$ and ${ }^{2} \mathrm{~A}=\left[{ }^{2} \zeta_{\mathrm{i} j}\right]_{\mathrm{n} \times \mathrm{n}}$
Now the $\mathrm{i}^{\text {th }} \mathrm{j}^{\text {th }}$ entry of cofactor matrix of A $=$ cofactor of the entry $\xi_{i j}$
$=(-1)^{\mathrm{i}+\mathrm{j}} \times$ the determinant obtained by leaving the row and the column(in the matrix A) passing through the entry $\zeta_{i j}$
$=(-1)^{\mathrm{i}+\mathrm{j}} \times[$ the determinant obtained by leaving the row and the column(in the matrix
${ }^{1} \mathrm{~A}$) passing through the entry $\left.{ }^{1} \zeta_{\mathrm{i} j}\right\} \mathrm{e}_{1}+\{$ the determinant obtained by leaving the row and the column(in the matrix ${ }^{2} \mathrm{~A}$) passing through the entry $\left.\left.{ }^{2} \zeta_{\mathrm{i}} \mathrm{j}\right\} \mathrm{e}_{2}\right]$
$=\left(\right.$ cofactor of the entry ${ }^{1} \xi_{i j}$ in the matrix $\left.{ }^{1} A\right) e_{1}+\left(\right.$ cofactor of the entry ${ }^{2} \zeta_{i j}$ in the matrix $\left.{ }^{2} A\right) e_{2}$

Therefore the $\mathrm{i}^{\text {th }} \mathrm{j}^{\text {th }}$ entry of cofactor matrix of $\mathrm{A}=$ (The $\mathrm{i}^{\text {th }} \mathrm{j}^{\text {th }}$ entry of cofactor matrix of $\left.{ }^{1} A\right) e_{1}+\left(\right.$ The $i^{\text {th }} j^{\text {th }}$ entry of cofactor matrix of $\left.{ }^{2} A\right) e_{2}$

Hence it proves that cofactor matrix of $A=\left(\right.$ cofactor matrix of $\left.{ }^{1} A\right) e_{1}+($ cofactor matrix of ${ }^{2} \mathrm{~A}$) e_{2}
Theorem 2.2.4 and 2.2.5 submerge together to give a new corollary which is started below.
2.2.6 Corollary: If $A=\left[\xi_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ is a bicomplex square matrix then $\operatorname{adj} \mathrm{A}=\left[\operatorname{adj}^{1} \mathrm{~A}\right] \mathrm{e}_{1}$ $+\left[\operatorname{adj}^{2} \mathrm{~A}\right] \mathrm{e}_{2}$.
c) Inversion of bicomplex matrix by two techniques
2.3.1 Inverse of a bicomplex square matrix with the help of adjoint matrix

Let $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ be a square and non-singular matrix whose elements are in C_{2} and From 2.1.1, 2.2.2 and 2.2.6

We have $\mathrm{A}={ }^{1} \mathrm{~A}_{1}+{ }^{2} \mathrm{~A} \mathrm{e}_{2},|A|=\left|{ }^{1} A\right| e_{1}+{ }^{2} A \mid e_{2}$
And $\operatorname{adj} \mathrm{A}=\left[\operatorname{adj}^{1} \mathrm{~A}\right] \mathrm{e}_{1}+\left[\operatorname{adj}^{2} \mathrm{~A}\right] \mathrm{e}_{2}$
Now
$\mathrm{A} \times($ Adj. A$)=\left[{ }^{1} \mathrm{~A}_{1}+{ }^{2} \mathrm{~A} \mathrm{e}_{2}\right] \times\left[\operatorname{Adj} \cdot\left({ }^{1} \mathrm{~A}\right) \mathrm{e}_{1}+\operatorname{Adj} \cdot\left({ }^{2} \mathrm{~A}\right) \mathrm{e}_{2}\right]$
$=\left({ }^{1} \mathrm{~A} . A d j .{ }^{1} \mathrm{~A}\right) \mathrm{e}_{1}+\left({ }^{2} \mathrm{~A} . A d j .{ }^{2} \mathrm{~A}\right) \mathrm{e}_{2}\left(\right.$ since $\left.\mathrm{e}_{1} \cdot \mathrm{e}_{2}=0\right)$

Since ${ }^{1} \mathrm{~A},{ }^{2} \mathrm{~A}$ and I are complex matrices.

Therefore $A \times(\operatorname{Adj} . A)=\left(\left.\right|^{1} A\left|\mathrm{e}_{1}+\left.\right|^{2} A\right| \mathrm{e}_{2}\right)$.I, where the matrix I is a bicomplex matrix. (since there is no difference between the identity matrix in C_{1} and the identity matrix in C_{2} of same order.)
Therefore $\mathrm{A} \times(\mathrm{Adj} . \mathrm{A})=|A| . \mathrm{I}$

$$
\begin{aligned}
& \because|A| \notin \mathrm{O}_{2} \\
& \therefore \mathrm{~A} \times \frac{\operatorname{AdjA}}{|\mathrm{A}|}=1 \\
& \Rightarrow \mathrm{~A}^{-1}=\frac{\operatorname{Adj} \mathrm{A}}{|\mathrm{~A}|} \\
& \because\left(\left.\right|^{1} \mathrm{~A} \mid \neq 0 \text { and }\left.\right|^{2} \mathrm{~A} \mid \neq 0\right)
\end{aligned}
$$

Now construct

$$
\begin{aligned}
& \frac{{ }^{1} \mathrm{~A} \cdot\left(\operatorname{Adj}{ }^{1} \mathrm{~A}\right)}{\left|{ }^{1} \mathrm{~A}\right|} \mathrm{e}_{1}+\frac{{ }^{2} \mathrm{~A} \cdot\left(\mathrm{Adj}{ }^{2} \mathrm{~A}\right)}{\left.\right|^{2} \mathrm{~A} \mid} \mathrm{e}_{2} \\
& =\left({ }^{1} \mathrm{~A}^{1} \mathrm{~A}^{-1}\right) \mathrm{e}_{1}+\left({ }^{2} \mathrm{~A}^{2} \mathrm{~A}^{-1}\right) \mathrm{e}_{2} \\
& =\mathrm{I} \mathrm{e}_{1}+I \mathrm{e}_{2}=\mathrm{I} \\
& =\mathrm{A} \times \frac{\operatorname{AdjA}}{|\mathrm{A}|}
\end{aligned}
$$

Hence $A^{-1}=\frac{\operatorname{AdjA}}{|A|}$ and

$$
A \times \frac{\operatorname{Adj} A}{|A|}=\frac{{ }^{1} A \cdot\left(\operatorname{Adj}{ }^{1} A\right)}{\left|{ }^{1} A\right|} e_{1}+\frac{{ }^{2} A \cdot\left(\operatorname{Adj}{ }^{2} A\right)}{\left.\right|^{2} A \mid} e_{2}
$$

2.3.2 Inverse of bicomplex square matrix with the help of idempotent technique

If $\mathrm{M}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is a square and nonsingular bicomplex matrix of order n
Therefore $\mathrm{M}={ }^{1} \mathrm{M} \mathrm{e}_{1}+{ }^{2} \mathrm{M} \mathrm{e}_{2}$
Since $|M| \notin O_{2}$ therefore $\left|{ }^{1} M\right| \neq 0$ and $\left|{ }^{2} M\right| \neq 0$
i.e. ${ }^{1} \mathrm{M}$ and ${ }^{2} \mathrm{M}$ are invertible. Let the inverse of both ${ }^{1} \mathrm{M}$ and ${ }^{2} \mathrm{M}$ be $\left[z_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ and $\left[w_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ respectively. Now construct a new matrix with the help of $\left[z_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ and $\left[w_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ as

$$
\left[z_{i j}\right]_{\mathrm{n} \times \mathrm{n}} \mathrm{e}_{1}+\left[w_{i j}\right]_{\mathrm{n} \times \mathrm{n}} \mathrm{e}_{2}=\left[\eta_{i j}\right]_{\mathrm{n} \times \mathrm{n}} \text { (say) }
$$

Now we claim that $\left[\eta_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is the inverse of M .
Note that

$$
\begin{aligned}
{\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}} \times\left[\eta_{i j}\right]_{\mathrm{n} \times \mathrm{n}} } & =\left(\left[{ }^{1} \xi_{i j}\right]_{n \times n} e_{1}+\left[{ }^{2} \xi_{i j}\right]_{n \times n} e_{2}\right) \times\left(\left[{ }^{1} \eta_{i j}\right]_{n \times n} e_{1}+\left[{ }^{2} \eta_{i j}\right]_{n \times n} e_{2}\right) \\
& =\left(\left[{ }^{1} \xi_{i j}\right]_{n \times n}\left[{ }^{1} \eta_{i j}\right]_{n \times n}\right) e_{1}+\left(\left[{ }^{2} \xi_{i j}\right]_{n \times n}\left[{ }^{2} \eta_{i j}\right]_{n \times n}\right) e_{2}
\end{aligned}
$$

Since

$$
\begin{gathered}
{\left[{ }^{1} \eta_{i j}\right]_{n \times n}=\left[z_{i j}\right]_{\mathrm{n} \times \mathrm{n}} \text { and }\left[{ }^{2} \eta_{i j}\right]_{n \times n}=\left[w_{i j}\right]_{\mathrm{n} \times \mathrm{n}}} \\
\therefore\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}} \times\left[\eta_{i j}\right]_{\mathrm{n} \times \mathrm{n}}=\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{I}
\end{gathered}
$$

Hence $\left[\eta_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is the inverse of M .

iII. Some Special Bicomplex Matrices

a) Conjugates of a bicomplex matrix

As there are three types of conjugates of a bicomplex number, we have defined three types of conjugates of a bicomplex matrix.

3.1.1 Definition: i_{1} Conjugate of a bicomlex matrix

Let $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ be the bicomplex matrix then the i_{1} conjugate of matrix A written as \bar{A} is the matrix obtained from A by taken i_{1} conjugate of each entry of A. i.e.

$$
\bar{A}=\left[\begin{array}{cccc}
\bar{\xi}_{11} & \bar{\xi}_{12} & \ldots . . & \bar{\xi}_{1 n} \\
\bar{\xi}_{21} & \bar{\xi}_{22} & \ldots . . & \bar{\xi}_{2 n} \\
\ldots \ldots . & \ldots . . & \ldots . & \ldots . \\
\bar{\xi}_{m 1} & \bar{\xi}_{m 2} & \ldots . & \bar{\xi}_{m n}
\end{array}\right]
$$

The idempotent representation of \bar{A} can be obtained as follows

It is evident that
(a) $\overline{[(\bar{A})}]=A$
(b) $\overline{k A}=\bar{k} \bar{A}$ wherek $\in C_{2}$

Similarly the definition of i_{2} and $i_{1} i_{2}$ conjugate of a bicomplex matrix is following.

3.1.2 Definition: i_{2} Conjugate of a bicomlex matrix

Let $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ be the bicomplex matrix then the i_{2} conjugate of matrix A written as A^{\sim} is the matrix obtained from A by taken i_{2} conjugate of each entry of A. i.e.

$$
A^{\sim}=\left[\begin{array}{llll}
\xi_{11}^{\sim} & \xi_{12}^{\sim} & \ldots . . & \xi_{1 n}^{\sim} \\
\xi_{21}^{\sim} & \xi_{22}^{\sim} & \ldots . . & \xi_{2 n}^{\sim} \\
\ldots . . & \ldots \ldots & \ldots . . & \ldots . . \\
\xi_{m 1}^{\sim} & \xi_{m 2} & \ldots . . & \xi_{m n}^{\sim}
\end{array}\right]
$$

The idempotent representation of A^{\sim} can be obtained as follows:

$$
\begin{aligned}
A^{\sim}= & {\left[\begin{array}{cccc}
2 \xi_{11} & 2 \xi_{12} & \ldots . . & 2 \xi_{1 n} \\
2 \xi_{21} & 2 \xi_{22} & \ldots . . & 2 \xi_{2 n} \\
\ldots . . & \ldots . . & \ldots . . & \ldots \ldots . \\
2 \xi_{m 1} & 2 \xi_{m 2} & \ldots . . & 2_{m n}
\end{array}\right] e_{1} } \\
& +\left[\begin{array}{cccc}
1_{11} & 1 \xi_{12} & \ldots . & 1 \xi_{1 n} \\
1 \xi_{21} & 1 \xi_{22} & \ldots . & 1 \xi_{2 n} \\
\ldots . . & \ldots . & \ldots . & \ldots . \\
1 \xi_{m 1} & 1 \xi_{m 2} & \ldots . & 1 \xi_{m n}
\end{array}\right] e_{2}
\end{aligned}
$$

It is evident that
(a) $\left(A^{\sim}\right)^{\sim}=A$
(b) $(k A)^{\sim}=k^{\sim} A^{\sim}$ where $k \in C_{2}$
3.1.3 Definition: $\mathrm{i}_{1} \mathrm{i}_{2}$ Conjugate of a bicomplex matrix

Let $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ be the bicomplex matrix then the $\mathrm{i}_{1} \mathrm{i}_{2}$ conjugate of matrix A written as $A^{\#}$ is the matrix obtained from A by taken $i_{1} i_{2}$ conjugate of each entry of A. i.e.

$$
A^{\#}=\left[\begin{array}{cccc}
\xi_{11}{ }^{\#} & \xi_{12}{ }^{\#} & \ldots . . & \xi_{1 n}{ }^{\#} \\
\xi_{21}{ }^{\#} & \xi_{22}{ }^{\#} & \ldots . . & \xi_{2 n}{ }^{\#} \\
\ldots . . & \ldots . . & \ldots . . & \ldots . . \\
\xi_{m 1}{ }^{\#} & \xi_{m 2}{ }^{*} & \ldots . . & \xi_{m n}{ }^{\#}
\end{array}\right]
$$

The idempotent representation of $\mathrm{A}^{\#}$ can be obtained as follows:

It is evident that
(a) $\left(A^{*}\right)^{\#}=A$
(b) $(k A)^{\#}=k^{\#} A^{\#}, k \in C_{2}$
b) Tranjugate of a bicomplex matrix

The transpose of conjugate of a bicomplex matrix is defined as the tranjugate of the matrix. There are three types of tranjugates of a bicomplex matrix.
3.2.1 Definition: i_{1} tranjugate of a bicomplex matrix

The transpose of the i_{1} conjugate of a bicomplex matrix is defined as the i_{1} tranjugate of the matrix.
i.e. If $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ then

$$
i_{1} \text { tranjugate of } A=[\bar{A}]^{T}=\left[\begin{array}{cccc}
\bar{\xi}_{11} & \bar{\xi}_{21} & \ldots . . & \bar{\xi}_{m 1} \\
\bar{\xi}_{12} & \bar{\xi}_{22} & \ldots . . & \bar{\xi}_{m 2} \\
\ldots . & \ldots . & \ldots . . & \ldots . . \\
\bar{\xi}_{1 n} & \bar{\xi}_{2 n} & \ldots . & \bar{\xi}_{m n}
\end{array}\right]
$$

Similarly
3.2.2 Definition: i_{2} tranjugate of a bicomplex matrix

The transpose of the i_{2} conjugate of a bicomplex matrix is defined as the i_{2} tranjugate of the matrix.
i.e. If $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ then

$$
i_{2} \text { tranjugate of } A=\left[A^{\sim}\right]^{T}=\left[\begin{array}{llll}
\xi_{11}^{\sim}{ }^{\sim} & \xi_{21}{ }^{\sim} & \ldots . . & \xi_{m 1}^{\sim} \\
\xi_{12}{ }^{\sim} & \xi_{22} \sim & \ldots . . & \xi_{m 2} \sim \\
\ldots . . & \ldots . . & \ldots . . & \ldots . . \\
\xi_{1 n}{ }^{\sim} & \xi_{2 n}{ }^{\sim} & \ldots . . & \xi_{m n}{ }^{\sim}
\end{array}\right]
$$

3.2.3 Definition: $\mathrm{i}_{1} \mathrm{i}_{2}$ tranjugate of a bicomplex matrix

The transpose of the $i_{1} i_{2}$ conjugate of a bicomplex matrix is defined as the $i_{1} i_{2}$ tranjugate of the matrix.
i.e. If $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ then

$$
i_{1} i_{2} \text { tranjugate of } A=\left[A^{\#}\right]^{T}=\left[\begin{array}{cccc}
\xi_{11}^{\#} & \xi_{21}{ }^{\#} & \ldots . . & \xi_{m 1}{ }^{\#} \\
\xi_{12}^{\#} & \xi_{22}{ }^{\#} & \ldots . . & \xi_{m 2}{ }^{\#} \\
\ldots \ldots & \ldots . . & \ldots . . & \ldots . . \\
\xi_{1 n}^{\#} & \xi_{2 n}^{\#} & \ldots . . & \xi_{m n}{ }^{\#}
\end{array}\right]
$$

c) Symmetric and skew - symmetric matrix in C_{2}

3.3.1 Definition: Symmetric matrix

A bicomplex square matrix $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is said to be symmetric if $\mathrm{A}=[\mathrm{A}]^{\mathrm{T}}$. Thus for a symmetric matrix A , we have $\xi_{i j}=\xi_{j i}$ for all i and j
3.3.2 Definition: Skew-symmetric matrix

A bicomplex square matrix $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is said to be skew-symmetric if $\mathrm{A}=-[\mathrm{A}]^{\mathrm{T}}$. Thus for a skew-symmetric matrix A, we have $\xi_{i j}=-\xi_{j i}$ for all i and j
3.3.3 Theorem: The elements of principal diagonal of skew-symmetric matrix are zero. Proof:

We know that a matrix $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is skew - symmetric if and only if $\xi_{i j}=-\xi_{j i}$ for all i and j . For diagonal element we have $\xi_{i i}=-\xi_{i i}$ therefore
If $\xi_{i i}=\mathrm{z}_{\mathrm{ii}}+\mathrm{i}_{2} \mathrm{w}_{\mathrm{ii}}$ then $\left(\mathrm{z}_{\mathrm{ii}}+\mathrm{i}_{2} \mathrm{w}_{\mathrm{ii}}\right)=-\left(\mathrm{z}_{\mathrm{ii}}+\mathrm{i}_{2} \mathrm{w}_{\mathrm{ii}}\right)$
Therefore $\mathrm{z}_{\mathrm{ii}}=0, \mathrm{w}_{\mathrm{ii}}=0$
i.e. $\xi_{i i}=0$ for all i

d) Hermitian matrix in C_{2}

Corresponding to the three types of conjugates in C_{2}, there are three types of Hermitian matrix in C_{2}.
3.4.1 Definition: i_{1} Hermitian matrix

A bicomplex square matrix A is said to be i_{1} Hermitian matrix if $A=[\bar{A}]^{T}$
3.4.2 Theorem: The elements of principal diagonal of an i_{1} Hermitian matrix are members of $\mathrm{C}\left(\mathrm{i}_{2}\right)$.
Proof:
Recall that $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is i_{1} Hermitian matrix if and only if $\xi_{i j}=\bar{\xi}_{j i} \forall \mathrm{i}$ and j .
For diagonal element we have

$$
\begin{aligned}
\xi_{k k} & =\bar{\xi}_{k k} \\
\text { If } \xi_{k k} & =\mathrm{z}_{\mathrm{kk}}+\mathrm{i}_{2} \mathrm{w}_{\mathrm{kk}} \text { then } \\
z_{k k}+i_{2} w_{k k} & =\bar{z}_{k k}+i_{2} \bar{w}_{k k} \\
& \Rightarrow z_{k k} \in C_{0} \text { and } w_{k k} \in C_{0} \\
& \Rightarrow \xi_{k k} \in C\left(i_{2}\right)
\end{aligned}
$$

3.4.3 Definition: i_{2} Hermitian matrix

A bicomplex square matrix A is said to be i_{2} Hermitian matrix if $A=\left[A^{\sim}\right]^{T}$
3.4.4 Theorem: The elements of principal diagonal of an i_{2} Hermitian matrix are members of C (i_{1}).

Proof:

$\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is i_{2} Hermitian matrix if and only if $\xi_{i j}=\xi_{j i}{ }^{2} \forall \mathrm{i}$ and j.
For diagonal element we have

$$
\begin{aligned}
\xi_{k k} & =\xi_{k k} \sim \\
\text { If } \xi_{k k} & =\mathrm{z}_{\mathrm{kk}}+\mathrm{i}_{2} \mathrm{w}_{\mathrm{kk}} \\
& \Rightarrow z_{k k}+i_{2} w_{k k}=z_{k k}-i_{2} w_{k k} \\
& \Rightarrow \xi_{\mathrm{kk}} \in \mathrm{C}\left(\mathrm{i}_{1}\right)
\end{aligned}
$$

3.4.5 Definition: $\mathrm{i}_{1} \mathrm{i}_{2}$ Hermitian matrix

A bicomplex square matrix A is said to be $\mathrm{i}_{1} \mathrm{i}_{2}$ Hermitian matrix if $A=\left[A^{\#}\right]^{T}$
3.4.6 Theorem: The elements of principal diagonal of an $i_{1} i_{2}$ Hermitian matrix are members of H .

Proof:
$\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is $\mathrm{i}_{1} \mathrm{i}_{2}$ Hermitian matrix if and only if $\xi_{i j}=\xi_{j i}{ }^{\#} \forall \mathrm{i}$ and j .
For diagonal element we have

$$
\begin{aligned}
& \xi_{k k}=\xi_{k k}^{\#} \\
& \text { If } \begin{aligned}
\xi_{k k} & =\mathrm{z}_{\mathrm{kk}}+\mathrm{i}_{2} \mathrm{w}_{\mathrm{kk}} \\
& \Rightarrow z_{k k}+i_{2} w_{k k}=\bar{z}_{k k}-i_{2} \bar{w}_{k k} \\
& \Rightarrow z_{\mathrm{kk}} \in \mathrm{C}_{0} \text { and } w_{\mathrm{k} \mathrm{k}} \text { is in the form of } \mathrm{i}_{1} \mathrm{y} \text { where } \mathrm{y} \text { in } \mathrm{C}_{0} \\
& \Rightarrow \xi_{\mathrm{kk}} \in \mathrm{H}
\end{aligned}
\end{aligned}
$$

e) Skew-Hermitian matrix in C_{2}

Analogous to the theory of Hermitian matrices, we have defined three types of skew-Hermitian matrices in C_{2}.
3.5.1 Definition: i_{1} skew-Hermitian matrix

A bicomplex square matrix A is said to be i_{1} skew-Hermitian matrix if $A=-[\bar{A}]^{T}$
3.5.2 Theorem: The elements of principal diagonal of an i_{1} skew-Hermitian matrix are of the type of $\left(i_{1} \times s\right)$, where $s \in C\left(i_{2}\right)$.
Proof:
Let $\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ be an i_{1} skew-Hermitian matrix then $\xi_{i j}=-\bar{\xi}_{j i}$; for all i and j .
For diagonal element we have

$$
\begin{aligned}
\xi_{k k} & =-\bar{\zeta}_{k k} \\
\text { If } \xi_{k k} & =\mathrm{z}_{\mathrm{kk}}+\mathrm{i}_{2} \mathrm{w}_{\mathrm{kk}} \text { then } \\
z_{k k}+i_{2} w_{k k} & =-\left(\bar{z}_{k k}+i_{2} \bar{w}_{k k}\right)
\end{aligned}
$$

Therefore $z_{k k}=-\bar{z}_{k k}$ and $w_{k k}=-\bar{w}_{k k}$
Hence $\xi_{k k}=\mathrm{i}_{1}\left\{\operatorname{Im}\left(\mathrm{z}_{\mathrm{kk}}\right)\right\}+\mathrm{i}_{2} \mathrm{i}_{1}\left\{\operatorname{Im}\left(\mathrm{w}_{\mathrm{kk}}\right)\right\}=\mathrm{i}_{1} . \mathrm{s}$ where $\mathrm{s} \in \mathrm{C}\left(\mathrm{i}_{2}\right)$

3.5.3 Definition: i_{2} skew-Hermitian matrix

A bicomplex square matrix A is said to be i_{2} skew-Hermitian matrix if $A=-\left[A^{\sim}\right]^{T}$
3.5.4 Theorem: The elements of principal diagonal of an i_{2} skew-Hermitian matrix are of the type of $\left(i_{2} \times s\right)$, where $s \in C\left(i_{1}\right)$.
Proof:
$\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is an i_{2} skew-Hermitian matrix if and only if $\xi_{i j}=-\xi_{j i}{ }^{2}$; for all i and j .
For diagonal element we have

$$
\begin{aligned}
\xi_{k k} & =-\xi_{k k} \sim \\
\text { If } \xi_{k k} & =\mathrm{z}_{\mathrm{kk}}+\mathrm{i}_{2} \mathrm{w}_{\mathrm{kk}} \text { then } \\
z_{k k}+i_{2} w_{k k} & =-\left(z_{k k}-i_{2} w_{k k}\right)
\end{aligned}
$$

Therefore $z_{k k}=-z_{k k}$ i.e. $z_{k k}=0$
Hence $\xi_{k k}=\mathrm{i}_{2}\left(\mathrm{w}_{\mathrm{kk}}\right)=\mathrm{i}_{2} . \mathrm{s}$ where $\mathrm{s}=\mathrm{w}_{\mathrm{kk}} \in \mathrm{C}\left(\mathrm{i}_{1}\right)$
3.5.5 Definition: $\mathrm{i}_{1} \mathrm{i}_{2}$ skew-Hermitian matrix

A bicomplex square matrix A is said to be $\mathrm{i}_{1} \mathrm{i}_{2}$ skew-Hermitian matrix if $A=-\left[A^{\#}\right]^{T}$ 3.5.6 Theorem: The elements of principal diagonal of an $i_{1} i_{2}$ skew-Hermitian matrix are of the type of $\left(i_{1} \times s\right)$, where $s \in H$.

Proof:
$\mathrm{A}=\left[\xi_{i j}\right]_{\mathrm{n} \times \mathrm{n}}$ is an $\mathrm{i}_{1} \mathrm{i}_{2}$ skew-Hermitian matrix if and only if $\xi_{i j}=-\xi_{j i}{ }^{*}$; for all i and j .
For diagonal element we have

Therefore $z_{k k}=-\bar{z}_{k k}$ and $w_{k k}=\bar{w}_{k k}$
Hence

$$
\begin{aligned}
\xi_{k k} & =\mathrm{i}_{1}\left\{\operatorname{Im}\left(\mathrm{z}_{\mathrm{kk}}\right)\right\}+\mathrm{i}_{2}\left\{\operatorname{Re}\left(\mathrm{w}_{\mathrm{kk}}\right)\right\} \\
\xi_{k k} & =\mathrm{i}_{1}\left\{\operatorname{Im}\left(\mathrm{z}_{\mathrm{kk}}\right)\right\}+\mathrm{i}_{1} \mathrm{i}_{1}^{-1} \mathrm{i}_{2}\left\{\operatorname{Re}\left(\mathrm{w}_{\mathrm{kk}}\right)\right\} \\
& =\mathrm{i}_{1}\left[\operatorname{Im}\left(\mathrm{z}_{\mathrm{kk}}\right)-\mathrm{i}_{1} \mathrm{i}_{2} \operatorname{Re}\left(\mathrm{w}_{\mathrm{kk}}\right)\right] \\
& =\mathrm{i}_{1} \cdot \mathrm{~s} ; \text { where } \mathrm{s} \in \mathrm{H}
\end{aligned}
$$

3.5.7 Theorem: A is i_{1} Hermitian matrix if and only if $i_{1} A$ is i_{1} skew - Hermitian matrix.
Proof:
Let A be an i_{1} Hermitian matrix therefore

$$
\begin{align*}
A & =[\bar{A}]^{T} \\
\text { Now }\left[\overline{i_{1} A}\right]^{T} & =\left[\overline{i_{1}} \bar{A}\right]^{T} \tag{by3.1.1}\\
& =-\mathrm{i}_{1}[\bar{A}]^{T} \\
& =-\mathrm{i}_{1} \mathrm{~A}
\end{align*}
$$

i.e. $\mathrm{i}_{1} \mathrm{~A}=-\left[\overline{i_{1} A}\right]^{T}$
$\Rightarrow i_{1} A$ is i_{1} skew - Hermitian matrix.
Converse:
Let $i_{1} A$ be an i_{1} skew - Hermitian matrix
i.e.
i.e.

$$
\begin{aligned}
\mathrm{i}_{1} \mathrm{~A} & =-\left[\overline{i_{1} A}\right]^{T} \\
& =-\left[{\left.\overline{\iota_{1}} \bar{A}\right]^{T}}\right. \\
& =\mathrm{i}_{1}[\bar{A}]^{T} \\
A & =[\bar{A}]^{T}
\end{aligned}
$$

Hence A is i_{1} Hermitian matrix.
3.5.8 Theorem: A is i_{2} Hermitian matrix if and only if $\mathrm{i}_{2} \mathrm{~A}$ is i_{2} skew - Hermitian matrix. Proof:
Let A be an i_{2} Hermitian matrix therefore

Now

$$
\begin{align*}
{\left[\left(i_{2} A\right)^{\sim}\right]^{T} } & =i_{2}^{\sim}\left[A^{\sim}\right]^{T} \tag{by3.1.2}\\
& =-\mathrm{i}_{2} \mathrm{~A} \\
\mathrm{i}_{2} \mathrm{~A} & =-\left[\left(\mathrm{i}_{2} \mathrm{~A}\right)^{\sim}\right]^{\mathrm{T}}
\end{align*}
$$

i.e.

Converse:
Let $\mathrm{i}_{2} \mathrm{~A}$ be an i_{2} skew - Hermitian matrix
i.e.

$$
\begin{aligned}
\mathrm{i}_{2} \mathrm{~A} & =-\left[\left(\mathrm{i}_{2} \mathrm{~A}\right)\right]^{\mathrm{T}} \\
& =-\left[\mathrm{i}_{2} \mathrm{~A}\right]^{\mathrm{T}} \\
& =\mathrm{i}_{2}[\mathrm{~A}]^{\mathrm{T}} \\
A & =\left[A^{\sim}\right]^{T}
\end{aligned}
$$

i.e.

Hence A is i_{2} Hermitian matrix.
3.5.9 Theorem: A is $i_{1} i_{2}$ Hermitian matrix if and only if $i_{1} i_{2} A$ is $i_{1} i_{2}$ Hermitian matrix.

Proof:
Let A be an $\mathrm{i}_{1} \mathrm{i}_{2}$ Hermitian matrix therefore

$$
A=\left[A^{\#}\right]^{T}
$$

Now

$$
\begin{align*}
{\left[\left(\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{~A}\right)^{\#}\right]^{\mathrm{T}} } & =\mathrm{i}_{1}{ }^{\#} \mathrm{i}_{2}{ }^{\#}\left[\mathrm{~A}^{\#}\right]^{\mathrm{T}} \tag{by3.1.3}\\
& =\left(-\mathrm{i}_{1}\right)\left(-\mathrm{i}_{2}\right) \mathrm{A} \\
& =\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{~A}
\end{align*}
$$

$\Rightarrow \mathrm{i}_{1} \mathrm{i}_{2} \mathrm{~A}$ is $\mathrm{i}_{1} \mathrm{i}_{2}$ Hermitian matrix.
Converse:
Let $\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{~A}$ be $\mathrm{i}_{1} \mathrm{i}_{2}$ Hermitian matrix
i.e.

$$
\begin{aligned}
\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{~A} & =\left[\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{~A}\right]^{\#} \\
& =\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{i}_{2}^{\#}\left[\mathrm{~A}^{\#}\right]^{\mathrm{T}} \\
& =\left(-\mathrm{i}_{1}\right)\left(-\mathrm{i}_{2}\right)\left[\mathrm{A}^{\#}\right]^{\mathrm{T}} \\
& =\mathrm{i}_{1} \mathrm{i}_{2}\left[\mathrm{~A}^{\#}\right]^{\mathrm{T}}
\end{aligned}
$$

i.e.

$$
\mathrm{A}=[\mathrm{A}] \text { \# }
$$

Hence A is $i_{1} i_{2}$ Hermitian matrix.

It is evident that if A is $i_{1} i_{2}$ skew-Hermitian matrix then $i_{1} i_{2} A$ will be also $i_{1} i_{2}$ skewHermitian matrix and vice versa.

References Références Referencias

1. D. Rochon, M. Shapiro,"On Algebraic Properties of Bicomplex and Hyperbolic Numbers", Anal. Univ. Oradea, fasc.Math.,11, 2004, 71 - 110.
2. Futagawa, M.: On the theory of functions of a quaternary Variable, Tohoku Math. J., 29 (1928), 175-222.
3. Futagawa, M.: On the theory of functions of a quaternary Variable, II, Tohoku Math. J., 35 (1932), 69-120.
4. Lipschutz, S. and Lipson, M. 'Schaum's "Outline of Theory and Problem of linear Algebra" Tata McGraw Hill Education, 2005.
5. Price, G.B.: An introduction to multicomplex spaces and Functions, Marcel Dekker Inc., New York, 1991.
6. Riley, J.D.: Contributions to the theory of function of a bicomplex variable, Tohoku Math. J., ${ }^{\text {nd }}$ series 5 (1953), 132-165.
7. Ringleb, F.: Beitrage Zur Funktionen theorie in Hyperkomplexon Systemen, I, Rend. Circ. Mat. Palermo, 57 (1933), 311-340.
8. Segre, C.: Le Rappresentazioni Reali Delle Forme Complesse e Gli enti Iperalgebrici, Math.Ann. 40 (1892), 413-467.
9. Srivastava, Rajiv K.: Bicomplex Numbers: Analysis and applications, Math.Student, 72 (1-4) 2003, 69-87.
10. Srivastava, Rajiv K "Certain topological aspects of Bicomplex space", Bull. Pure \& Appl. Math. Dec., 2008

[^0]: Author α o: Department of Mathematics, Institute of basic Science, Khandari, Dr. B.R. Ambedkar University, Agra-282002, India. e-mails: anjalisharma773@gmail.com, amitasharma234@gmail.com

