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. [NTRODUCTION

In 1892, Corrado Segre (1860-1924) published a paper [8] in which he treated an
infinite set of Algebras whose elements he called bicomplex numbers, tricomplex
numbers,...., n-complex numbers. A bicomplex number is an element of the form
(x,+1,%,) +i, (x5+i,%,), where x,...., X, are real numbers, i,” =i,” = -1 and i,i, = i,i,.

Segre showed that every bicomplex number z,+i,z, can be represented as the
complex combination

1+iqip
2

I+ (z1 +i12, )[1_i1i2]

(z1 —i127) | .

Srivastava [9] introduced the notations '¢ and *¢ for the idempotent components
of the bicomplex number § = z,+i,z,, so that

1 1+iqip 9¢el—iqip
g = tgltiiis y2glt

Michiji Futagawa seems to have been the first to consider the theory of functions
of a bicomplex variable [2,3] in 1928 and 1932.

The hyper complex system of Ringleb [7] is more general than the Algebras; he
showed in 1933 that Futagawa system is a special case of his own.

In 1953 James D. Riley published a paper [6] entitled “Contributions to theory of
functions of a bicomplex variable”.

Throughout, the symbols C,, C,, C, denote the set of all bicomplex, complex and
real numbers respectively.
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a) Some special subset of C,
We shall use notation C (i), C (i,) and H for the following sets.
C(i,) is the set of complex numbers with imaginary unit i,.i. e.

C (i,) = {a + 1, b;a, b e Cy}
and C (i,) is the set of complex numbers with imaginary unit i,.i. e.
C(i,) ={a+1ib;a, b e G}

The bicomplex number § =(x,+i,x,) +i, (x;+1,x,) for which x,= x; = 0 is called a
hyperbolic number.
The set of all hyperbolic numbers is denoted by H and defined as

H = {a + iji,b; a, b € C;}

b) Idempotent elements in C,

There are exactly four idempotent elements in C,. Out of these, 0 and 1 are the
trivial idempotent elements and two nontrivial idempotent elements denoted by e, and
e, which are defined as

o 1+iqip

1—igiy
e, =——and e, = ——
2

Obviously (e,)" = e, (&) " = e,
e, +e=1¢e.e,=0
C, is a field but C, is not a field, since C, has divisor of zero for example e, e, =
0 neither e, is zero nor e, is zero.
Every bicomplex number  has unique idempotent representation as complex
combination of e, and e, as follows
§ =271 +izy = (21 —i1zz)ey + (7 +i122)e;
The complex numbers (z; —i;z;)and (z; + iz, )are called idempotent
component of § and are denoted by '¢ and *¢ respectively (cf. Srivastava [9]).
Thus § = '€ e, + € e,
There are infinite numbers of element in C, which do not possess multiplicative
inverse. A bicomplex number § = z; + i,z is singular if and only if |z + z%| =0
The set of all singular elements in C, is denoted by O,
Evidently a nonzero bicomplex number ¢ is singular if and only if either '¢ = 0

or *¢ = 0 that is if and only if it is a complex multiple of either e, or e,.

¢) Algebraic properties of idempotent components

The idempotent representation is perfectly compatible with the algebraic
structure of C, in the following way

For all ¢, nin C,
Ein= (lieﬁziez) t (1ne1+2ne2 )

= (E£ e+ (¢t e,
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so that 1(§in):1§i1nand 2(%;111):2@121]

awt=a (Sg+7¢e)

= a(1§)e1+a(2§)e2, VaeC

sothat (0§ =a'¢ and *(af) =’ for ae C,
Notes gn= (‘ee+%e).(‘ne+ney)
=(Eme+ ("¢ n)e,,
S0 that (Em="¢Mmand *(En)= "¢ "

& _|lee+%
n_( - e%neﬁznez)
:[lé/jelJr[zé/Jez, providedn O,
n n
1 1 2 2
S0 that (%)=%aﬂd (%):%]

d) Norm in C,[5]
The norm of a bicomplex number

¢ = z,+HiyZ, = X, +Hi XX+ ix, = '€ e, + °€ e, is defined as
I8l = (%12 + %22 +x3% +x,%)"/°
= (lz4[*+12,1%)"”
‘2

= || +]7¢
2

C, becomes a modified Banach algebra, in the sense that ¢, <c,, we have,
In general|[&n| <2 ¢ 7]

e) Conjugates of a bicomplex number

Analogous to the concept of conjugate of a complex number, conjugates of a
bicomplex number are also defined. As a bicomplex number is four dimensional,
different types of conjugate arise.

In bicomplex space C,, every number & possesses three types of conjugates. The i,
conjugate, i, conjugate and i,i, conjugate of & = z,+i,z, = x,+i,x,+Hiyxy+iipx, = '€ e, + %
e,are denoted by &, £ and g#respectively, therefore

£ =0q — ip) +ip(xg—ipx,)
= G+ ix7)

= (%ze + Le,)
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&7 = (x1 + ilxz) - i2(x3 + i1x4)
=(z —iy7))
= (%e + 1z ,)
£ = 0 - ipxp) —iplxg —ip xg)
= (7 —i%)
= (E(Jj_ +¥ez) NOteS

[I. CERTAIN RESULTS FROM BICOMPLEX MATRICES

2018

a) Some Definitions

Year

2.1.1 Bicomplex matrices
A matrix A = [§,]....whose entries belong in C,, is said to be a bicomplex matrix
i.e. we define

]an

=
H

é:l 1 51 2 T é:l n
A= (5_21 552 N gjn Vépq€ C.
é.::ml é:mz - gmn

Where ]l < p<mand1<q<n
Since every bicomplex number & has unique idempotent representation as
complex combination of e, and e, as follows
§ = z,+Hiyz, = (z-iz,)e; + (z,+i2,)e,
Therefore every bicomplex matrices A = [§,,].... can be expressed uniquely as
'"Ae,+ *Ae, such that 'A = [z, ], «» and A = [w,, ], x. are complex matrices.

2.1.2 Bicomplex square matrices

A bicomplex matrix in which the number of rows is equal to the number of
columns is called a bicomplex square matrix. i.e.

Frontier Research (F) Volume XVIII Issue II Version I

9‘1 1 512 ..... fln
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2.1.3 Bicomplex diagonal matrices

A bicomplex square matrix A is called a diagonal matrix if all its non-diagonal
elements are zero i.e.

[ |
éll 0o ... 0
0 éqaq ... 0
A= 522 .......... , Epgs G
0 0 .. n
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2.1.4 Determinant of a bicomplex matrix

Let A =[£lnxnbe a bicomplex square matrix of order n, where n is some positive

integer. The determinant of A, is defined as

detA:|A|:‘[§ij]‘, Sij €C,

Notes

detA = |A| = Z Sig. (a)ﬂfia(i)

OES,

i

n

=1

Where S, is the group of all permutation on ‘n’ symbols.

2.1.5 Transpose of a bicomplex matrix

If A =1E, .

obtained from ‘A’ by changing its rows into columns and its columns into rows is called

m X n

transpose of ‘A’ and is denoted by A".

2.1.6 Cofactor and adjoint matrix of a matrix in C,

Let A =[&]lwnbe a bicomplex square matrix of order n then cofactor of the
entry &; is defined as (-1)" X the determinant obtained by leaving the row and the
column(In the matrix A) passing through the entry &; =1 (say).

Then the matrix [7ijlaxn is defined as the cofactor matrix of A and the transpose

of cofactor matrix of A is known as adjoint matrix of A. i.e. AdjA=[7;1 n

2.1.7 Bicomplex singular and non-singular matrix
A bicomplex Square matrix is said to be non-singular if |A| ¢0, (set of all singular

element in C,).

and If | /-\|e O, then it is called singular matrix.

b) Algebraic structure of bicomplex Matrices
Let S be the set of all bicomplex square matrices of order n. Define binary
compositions over S called addition “+” , scalar multiplication “.”

as follows:

be the arbitrary member of S and a € F, where F is either field of real numbers or

complex numbers.

LetA = ‘21

is any bicomplex matrix then A matrix of order n X m

and multiplication “Xx”
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1ty Sty St Mn

+ +1An ... +
A4+ B |2t21 $22% 22 - Sntian
Mt Sn2t g e Shn *nn
abyy 95y - %1 Sghy e 7T ST e T
Lg% 2 %y g Sy T o T St T an g
a(:ln a§2n ..... aénn §n17111+ ..... +§nn77n1 -—- §n1n1n+""+§nnnnn

2.2.1 Theorem: The set of all bicomplex square matries i.e “S” forms an algebra.

Proof:
a. Additive abelian group structure

e Associativity:
Let A =[&]ans B = [mjlnnand C = [ ]5.n be the member of S and a, f € F then

St tsgg) e &+ (1 +611)
At (B+C) = Egy + (o1 +697) e Eon + (Ton + o)
St g tSg) e Enn + o +Spn)
(G +mp+eyy e &+ )+ <11,
(A+B)+C= SR (Eop +7720) * Sopy
C i) +Spg e Enn )+ S

Since C, is an algebra
Therefore A + (B +C) = (A + B)+ C
Identity: v A € S JInull matrix “0"e S then A + 0 =A i.e

‘1 12 ¢Inl o o .. 0] [&1 & - £ln
o1 %20 Son . 0 ... 0] |y Spp o Eon
S S S 0 0 .. 0] |$g & o
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So 0 is the additive identity.

e Inverse:
vAe S 3- A € Ssuch that—A +A =0 i.e.
] ~&1 &y a0l Té1 &p &In 0o 0 . 0
—8o1 —S&9p e Sonl |621 Spp - $on _|0 o0 .. 0
éznl ézn2 """ 6Enn ‘fnl ‘§n2 """ ‘fnn 0 0 . 0
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Notes

Therefore “—A” is the additive inverse of A.

o Commutative:

Since
1ty 12t S1n
A+Bo |2t Sty Son " on
Cjfnl * nnl sgn2 * nn2 """ fnn 77nn
And
M1ty Mptépp e Mn *1n
B+ A= "1t Mty Ton*S2n
Matém Th2tsn2 Tan* Snn

Therefore A + B = B+A as C, is an algebra.
So S is abelian group under addition

b. Ring structure

o C(Closure:
Since
Spy e o S0 1T
aeh - | 220m1 T g T St T g
égnl”llJr """ +5tnn77n1 o gnlﬂln +""+§nn’7nn

Therefore it is evident that AXB € S
Therefore S is closed under multiplication
o Associativity:
v A, B, CeS
Let A :[fij]nxna B = [Tlij]nxnand C= [gij]nxn

The i"j" entry of (AXB)XC = [i"row of (AXB)]X[j" column of C]

=[i" row of A]xBxX[j"column of C]

Now the i"j" entry of Ax(BxC) = [i" row of A]x[j"® column of (BxC)]

=[i" row of A] X B X [j"column of C]
Therefore the i"j" entry of (AXB)xC =i"j" entry of AX(BxC)
Hence (AXB)XC = Ax(BxC)

Distribution law:
We can easily show that

(A + B)XxC = AXC+BxC and AX(B+C)=AXxB+AXxC
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c. Linear space structure

Therefore (a+f).A = a.A+B.A
(4) It is evident that 1.A = A for all A in S and 1€F

d. Consistency between multiplication and scalar multiplication

1ty c1ptp e Sty
WA+ B) =oAL 22T S2n *n (1)
Sttt Sn2th2 e Snn *nn
alepytmg)  alGp+mp) alGntmy) | |%n % v %
o _ |Gy tmyg) alGpptiyy) a(Sontilgn) | _ | %g1 % %gn|,
5 a(§n1+77n1) a(§n2+77n2) ..... a(cfnn+77nn) aénl a§n2 ..... afnn
14
! Wy Ay e @y 11 f12 sin M1 o n
E alyy Algy o Wy | _ |51 S22 Sonl, |21 M2 2n
i any Ay - M §n1 §n2 ..... §nn Mg Tho Mon
;f Therefore a.(A +B) = a.A + a.B
E S S _ &y (@p)e, (@B)s, _ (ap)s, B BS, _ BS,
E (aﬂ)AZ(Ofﬂ) 521 522 - é:Zn _ (aﬂ)é:zl (aﬂ)gzz - (aﬂ)@lgzn (a,B).Aza. ﬂ§z1 ﬂégzz - ﬂ§Zn (2)
z Su o — bnl L@P), @B, _ (@B, Bé, Bén _ P,
? Therefore (af).A=a.(B.A)
g 511 ég:|.2 ..... é:.'].ﬂ 511 512 §1n 511 512 """ §1n
i el R el . N I
; égn:]_ §n2 """ énn §n1 52 é: 51 éjz """ é

a.(AxB)=(a.A)xB=Ax(a.B)

éll 512 e gln ’711 7712 e nln

O E, &, o & Ny Ny e 7
a (AX B) =q. 21 22 2n x 21 22 2n
gnl §n2 - §nn 771[1 772!1 """ ﬂnn
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Notes

nn
o (AxB)=a. st T Ty T ot T oon T
R I L R

a(é:llnll) o + a(glnnnl) -0 a(gllnln) o + a(glnnnn)

a(§217711) + """ + a(gznnnz) a(§21771n) + + a(gznnnn)

a(§ i)+t al&on ) === el ) tetalg )

Since C, is an algebra

Therefore a.(AXB)=(a

A)xB=AX(a.B)

Hence it proves that S is an algebra.

222 Theorem: Let A = [§1 j] axn be a bicomplex

e, + (det*A) e,.
Proof:
Let

From 2.1.4,

Since

(Al | |52 S22

square matrix then det A = (det'A)

..... ‘fln

§2n

..... ¢nn
§1n
eg2n
¢nn

n
. detA = |A| = Z Sig-(G)l_[fia(i)
1

OES,

= z Sig. (o) 1_[

OES, i=1
As&n = ('¢n) e, + (*¢n)

[1§'J]nxn

det 'A =

i=

Cfia(i) et

Z og. (0)1_[ Ciom |2
1

OES, i=

e, and &+n = ('¢+'n) e, + (*6+ ) e,
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- Z Sig'(a)ﬁ Siow

[0ESy i=1
And det?A = -25”]
- nxn
[ n
- Z 5ig. (U)H RITG
| 0ESy i=1

Therefore det A = (det'A) e, + (det’A) e,

2.2.3 Theorem: If the determinant of A is non-singular then | I | # 0and | 2n |¢ 0.
Proof:

Suppose
511 {,‘12 ..... fln
A= |21 22 2n
nl “n2 Snn
From 2.2.2,

det A = (det'A) e, + (det’A) e,

since det A is non-singular

therefore det A = [(det'A) e, + (det’A) e, 20,

(Since ('€e, + *€e,) ¢ O, then '¢e; and *€e, both are non-zero)

Hence | JA|¢Oand | 2A|¢o

2.2.4 Theorem: Let A be a bicomplex matrix then A" = 'AT e, + *A" e,.
Proof

Let A = [§ ] ..xube a bicomplex matrix then

81 &g £
AT _[12 22 - m2

4n $2n émn

8, % o g
AT ]1512 1622 ..... ]fmz e +

Yn %o L
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Therefore A" = 'A" e, + *AT e,
2.2.5 Theorem: Let A be a bicomplex square matrix then cofactor matrix of A =
(cofactor matrix of 'A) e,+(cofactor matrix of *A) e,.

Proof-

Let A = [gij] nXn
A =['¢ ] uxn and A = [%§, ]
Now the i™ j entry of cofactor matrix of A

be a bicomplex square matrix then

nxXn

=cofactor of the entry &,
=(-1)" X the determinant obtained by leaving the row and the column(in the matrix
A) passing through the entry & ;
= (-1)™ x [{the determinant obtained by leaving the row and the column(in the matrix
'A) passing through the entry 18 ;e +{the determinant obtained by leaving the row
and the column(in the matrix *A) passing through the entry ires]

= (cofactor of the entry '¢; ; in the matrix 'A) e, +(cofactor of the entry ¢ ; in the
matrix *A) e,

Therefore the i j" entry of cofactor matrix of A = (The i j" entry of cofactor
matrix of 'A) e, + (The i"j™ entry of cofactor matrix of *A) e,

Hence it proves that cofactor matrix of A = (cofactor matrix of 'A) e,+(cofactor
matrix of ’A) e,
Theorem 2.2.4 and 2.2.5 submerge together to give a new corollary which is started
below.

2.2.6 Corollary: If A= g ]
+[adj®A] e,.
¢) Inversion of bicomplex matrix by two techniques

is a bicomplex square matrix then adj A=[adj'Ale,

mxn

2.3.1 Inverse of a bicomplex square matrix with the help of adjoint matrix

Let A = [Eij]m be a square and non-singular matrix whose elements are in C,
and From 2.1.1, 2.2.2 and 2.2.6

We have A ='A e, + *A e, |A|=|"Ae+|?Ale,

And adj A = [adj'A] e, + [adj’A ] e,

Now

AX(Adj.A) = ['A e, + °A )] x[Adj.(*A)e, + Adj.(PA)e,)]
= ('A.Adj.'A) e+ (*A.Adj.*A) e, (since e,.e,= 0)

= (]*A.D) e + (|2A] ) e,

Since 'A, *A and I are complex matrices.
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Therefore AX(Adj.A)= ‘ A{ e + ‘ A‘ e,).I, where the matrix I is a bicomplex

matrix.(since there is no difference between the identity matrix in C, and the identity
matrix in C, of same order.)

Therefore Ax(Adj.A)=|A|.I
Al ¢ O,

AdjA

SAX
A

=A"= AdiA
A
( |‘A|¢ Oand |2A|¢ 0 )
Now construct

AADA) L FAAD A
‘Al A

=(A'AY e + (AAY e

=Ile+1le =1
_ Ax AdjA
A
Hence A :%and

Ax AdjA *A.(:Ade) o + PAAPA) ..
WA °Al

2.3.2 Inverse of bicomplex square matrix with the help of idempotent technique

IftM = [Eij]m is a square and nonsingular bicomplex matrix of order n
Therefore M = 'M ¢, + *M e,
Since | M | ¢ 0, therefore‘lM‘io and ‘ZM‘::O

i.e. 'M and * M are invertible. Let the inverse of both 'M and *M be [z ],., and [w;; ],

respectively. Now construct a new matrix with the help of [Zl-j]an and [WU ]m
[Zij]an € + [Wl] ]n><n €y :[nij]an (SaY)

Now we claim that [nij]an is the inverse of M.
Note that

[EU ]anX[nl] = ([ EU] e; + [zfif]nxn ez) X ([lnij]nxn e+ [ij]nxn ez)

(el Ul e+ (Tl ol )
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Since [lnij ]nxn = [Zij]nxn and [2771']'] = [Wij]nxn

nxn

[gij]nxnx[nij]nxn = I el + I e2 - I
Hence [ni]-]m is the inverse of M.

[II.  SOME SPECIAL BICOMPLEX MATRICES

a) Conjugates of a bicomplex matrix

As there are three types of conjugates of a bicomplex number, we have defined
three types of conjugates of a bicomplex matrix.

3.1.1 Definition: |, Conjugate of a bicomlex matrix

Let A = [Eij]mm be the bicomplex matrix then the i, conjugate of matrix A

written as A is the matrix obtained from A by taken i, conjugate of each entry of A.
ie.

«511 6312 ..... an
A_ |91 S22 on
Ed o &

The idempotent representation of A can be obtained as follows

Ell %12 ..... Eﬁlﬂ 1__511 Elz ..... Eln
A - | %21 %22 . 2on o+ 7 Y Yon e,

It is evident that

(2)[(A)] = A

(b) kA=k Awherek eC,

Similarly the definition of i, and i,i, conjugate of a bicomplex matrix is following.
3.1.2 Definition: |, Conjugate of a bicomlex matrix

Let A = [Eij]mm be the bicomplex matrix then the i, conjugate of matrix A

written as A”is the matrix obtained from A by taken i, conjugate of each entry of A.
ie.
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The idempotent representation of A~ can be obtained as follows:

1 2512 ..... 2§1n
AT = | %o S on o
2 - LI Enn

t is evident that

I
( )(A)T=A
(b) (kA" =k A wherek e C,

3.1.3 Definition: i,i,Conjugate of a bicomplex matrix

Let A = [Eij]an be the bicomplex matrix then the ii, conjugate of matrix A
written as A” is the matrix obtained from A by taken ii, conjugate of each entry of A.

i.e.

Loy L I, ;511 2512
Al | B L Lon o * c21 %22
Y 1Tfm2 ----- Ym Zm %m2

It is evident that
(a) (A=A
(b) (kA =K'A" k € C,

b) Tranjugate of a bicomplex matrix

The transpose of conjugate of a bicomplex matrix is defined as the tranjugate of

the matrix. There are three types of tranjugates of a bicomplex matrix.

3.2.1 Definition: i, tranjugate of a bicomplex matrix

The transpose of the i, conjugate of a bicomplex matrix is defined as the

i,tranjugate of the matrix.
ie. If A = [&; ] then
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i, tranjugate of Az[K]T _ |12 S22 Sm2

Similarly

3.2.2 Definition: i, tranjugate of a bicomplex matrix
The transpose of the i, conjugate of a bicomplex matrix is defined as the
i, tranjugate of the matrix.

ie. If A = [Eij]an then

511 521 ..... éml
i, tranjugateof A=[A]" = S Sm e Smo
S o e £

3.2.3 Definition: ii, tranjugate of a bicomplex matrix
The transpose of the i,i, conjugate of a bicomplex matrix is defined as the ii,
tranjugate of the matrix.

ie. If A= [fij]mm then

# # #
611 521 """ éml
# # #
T — §12 522 """ §m2

i,i, tranjugate of A=[A"]

¢) Symmetric and skew — symmetric matrix in C,
3.3.1 Definition: Symmetric matrix

A bicomplex square matrix A = [fl-j]m is said to be symmetric if A = [A]". Thus
for a symmetric matrix A, we have &;= ¢;; for all i and j

3.3.2 Definition: Skew-symmetric matrix
A bicomplex square matrix A = [Eij]m is said to be skew-symmetric if A =-[A]".
Thus for a skew-symmetric matrix A, we have &;= -§; for all i and j

3.3.3 Theorem: The elements of principal diagonal of skew-symmetric matrix are zero.
Proof-

We know that a matrix A = [fij]m is skew - symmetric if and only if &;= -&;
for all i and j. For diagonal element we have ;= -§;therefore
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If & = z; + i,w; then (Zii + iQWii) = '(Zii + iQWii) |
Therefore z; = 0, w; = 0

ie. &= 0 for all i
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d) Hermitian matrix in C,

Corresponding to the three types of conjugates in C,,there are three types of
Hermitian matrix in C,.

3.4.1 Definition: i, Hermitian matrix
A bicomplex square matrix A is said to be i,Hermitian matrix if A = [A4]”

3.4.2 Theorem: The elements of principal diagonal of an i, Hermitian matrix are
members of C(i,).

Proof:
Recall that A = [fl-]-]m is i,Hermitian matrix if and only if ¢, =¢ ; vi and j.

For diagonal element we have
Sk = Skk
If & = 2z + 1wy, then
Zy + oW = Zy +i,W,
= 7 € Cy and w, € C,
=&, € Cli,)

3.4.3 Definition: i, Hermitian matrix

A bicomplex square matrix A is said to be i, Hermitian matrix if 4 = [A~]7

3.4.4 Theorem: The elements of principal diagonal of an i, Hermitian matrix are
members of C (i,).

Proof
A= [fl-j]m is i,Hermitian matrix if and only if &,;, =¢,” vi and j.

For diagonal element we have
$ie= Suk
If $ipe = 2z + LWy,

= Zg+ Wy = Zg = 1pW

= &€ C(iy)
3.4.5 Definition: i,i, Hermitian matrix

A bicomplex square matrix A is said to be i,i, Hermitian matrix if A = [4*]7

3.4.6 Theorem: The elements of principal diagonal of an 1i,i, Hermitian matrix
are members of H.

Proof
A= [fij]m is 1,i, Hermitian matrix if and only if &, =¢;" i and j.

For diagonal element we have
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= &’

If &k = 2y + iywyy,

= Z, +1,W, = Zik — 1, Wik
= z,.€ C, and w is in the form of i,y where y in C,
= &..eH

e) Skew-Hermitian matrix in C,

Analogous to the theory of Hermitian matrices, we have defined three types of
skew-Hermitian matrices in C,.

3.5.1 Definition: i, skew-Hermitian matrix

A bicomplex square matrix A is said to be i, skew-Hermitian matrix if 4 = —[A]”

3.5.2 Theorem: The elements of principal diagonal of an i, skew-Hermitian matrix
are of the type of (i;Xxs), where s € C (i,).
Proof:

Let A = [Eij]nxll be an i, skew-Hermitian matrix then ¢&;; =-¢ ;.for all i and j.

For diagonal element we have
Sek= —
If & = zy + i,wy, then
z, +i,w, = -(Z, +i,W,)
Therefore z,, =-7, andw,, =-W,,
Hence &, =i{Im (z)}+ i, i{Im (wy)}=i,.s where s € C (i,)

3.5.3 Definition: i, skew-Hermitian matrix

A bicomplex square matrix A is said to be i, skew-Hermitian matrix if A = —[4~]"

3.5.4 Theorem: The elements of principal diagonal of an i, skew-Hermitian matrix
are of the type of (i,xs), where s € C (i,).

Proof-
A= [fij]nxll is an i, skew-Hermitian matrix if and only if ¢&;; =-¢;; for all i and j.

For diagonal element we have

Sik= ki
If & = 2y + i,wy, then
z, +i,w, =—(z,— 1,W,)
Therefore z,=-2z, i.e. z,, = 0

Hence & = 1,(wy)=l,.s where s =w, € C (i)
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3.5.5 Definition: i,i, skew-Hermitian matrix
A bicomplex square matrix A is said to be i,i, skew-Hermitian matrix if 4 = —[A*]T

3.5.6 Theorem: The elements of principal diagonal of an ii, skew-Hermitian matrix
are of the type of (i;Xxs), where s €H.

Proof-
A= [Eij]m is an ii,skew-Hermitian matrix if and only if ¢;; =-¢;"; for all i and j. N
) otes
For diagonal element we have
Sue= —Sue”

Zo + ;W == (2 — iZWkk)

Therefore z,=-27, and w, =W,

Hence S =1 {Im (z5)} + 1.{Re (wii)}
ie. e =1 {Im (z0)} + 1,1, i{Re (wy)}
= 1, [Im(zy) — Li,Re(wy)]
= i,.8; where seH

3.5.7 Theorem: A is i, Hermitian matrix if and only if i, A is i, skew - Hermitian
matrix.

Proof:
Let A be an i, Hermitian matrix therefore
A=[A]"
Now [i;A]" = [i;A]" ...[by 3.1.1]
= ‘i1[A]T
=-iA

ie ,A = -[;;A]"
=i, A is i, skew - Hermitian matrix.

Converse:
Let i, A be an i, skew - Hermitian matrix

ie. LA = -[i;A]"
= -[4]"
= i,[4]"

ie. A=[A4]"

Hence A is i; Hermitian matrix.
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3.5.8 Theorem: A is i, Hermitian matrix if and only if i, A is i, skew - Hermitian matrix.

Proof:
Let A be an i, Hermitian matrix therefore
A=[ATT
Now [(le)~]T = i2~[A~]T [by 312]
Notes =-i, A
ie. i,A =-[(iL,A)]"

=i, A is i, skew - Hermitian matrix.

Converse:
Let i, A be an i, skew - Hermitian matrix

ie. A =-[(LA)]"
= ‘[12~A~]T
= i2[A~]T

i.e. A= [AN]T

Hence A is i, Hermitian matrix.
3.5.9 Theorem: A is i,i, Hermitian matrix if and only if ii, A isi,i, Hermitian matrix.

Proof:
Let A be an i,i, Hermitian matrix therefore

A=[A*]T
Now [(1,L,A)7" = i1, [A7]" ...[by 3.1.3]
= (_il)(_i2)A
— A

=i,i, A is i,i, Hermitian matrix.

Converse:
Let i,i, A be i,i, Hermitian matrix

i.e. LA = [iliZA]#
= il#i2#[A#]T
= (i) () [A]"
= i112[A#]T

i.e. A = [A] #

Hence A is i,i, Hermitian matrix.
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It is evident that if A is i,i, skew-Hermitian matrix then i,i, A will be also i,i, skew-

Hermitian matrix and vice versa.

10.
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