

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F MATHEMATICS AND DECISION SCIENCES Volume 18 Issue 2 Version 1.0 Year 2018 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Certain Results on Bicomplex Matrices

By Anjali & Amita

Dr. B. R. Ambedkar University

Abstract- This paper begins the study of bicomplex matrices. In this paper, we have defined bicomplex matrices, determinant of a bicomplex square matrix and singular and non-singular matrices in C_2 . We have proved that the set of all bicomplex square matrices of order n is an algebra. We have given some definitions and results regarding adjoint and inverse of a matrix in C_2 . We have defined three types of conjugates and three types of tranjugates of a bicomplex matrix. With the help of these conjugates and tranjugates, we have also defined symmetric and skew - symmetric matrices, Hermitian and Skew - Hermitian matrices in C_2 .

Keywords: bicomplex matrices, conjugates matrices, tranjugate matrices, Hermitian matrices, skew Hermitian matrices.

GJSFR-F Classification: MSC: 15 B 57, 30 G 35

CERTAIN RESULTS ON BICOMPLEX MATRICES

Strictly as per the compliance and regulations of:

© 2018. Anjali & Amita. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 \mathbf{R}_{ef}

Segre, C.: Le Rappresentazioni Reali Delle Forme Complesse e Gli enti Iperalgebrici, Math.Ann. 40 (1892), 413-467.

 $\dot{\infty}$

Certain Results on Bicomplex Matrices

Anjali [°] & Amita [°]

Abstract- This paper begins the study of bicomplex matrices. In this paper, we have defined bicomplex matrices, determinant of a bicomplex square matrix and singular and non-singular matrices in C_2 . We have proved that the set of all bicomplex square matrices of order n is an algebra. We have given some definitions and results regarding adjoint and inverse of a matrix in C_2 . We have defined three types of conjugates and three types of tranjugates of a bicomplex matrix. With the help of these conjugates and tranjugates, we have also defined symmetric and skew-symmetric matrices, Hermitian and Skew - Hermitian matrices in C_2 .

Keywords: bicomplex matrices, conjugates matrices, tranjugate matrices, Hermitian matrices, skew Hermitian matrices.

I. INTRODUCTION

In 1892, Corrado Segre (1860-1924) published a paper [8] in which he treated an infinite set of Algebras whose elements he called bicomplex numbers, tricomplex numbers,, n-complex numbers. A bicomplex number is an element of the form $(x_1+i_1x_2) + i_2 (x_3+i_1x_4)$, where x_1, \ldots, x_4 are real numbers, $i_1^2 = i_2^2 = -1$ and $i_1i_2 = i_2i_1$.

Segre showed that every bicomplex number $\mathbf{z}_1 + \mathbf{i}_2 \mathbf{z}_2$ can be represented as the complex combination

$$(z_1 - i_1 z_2) \left[\frac{1 + i_1 i_2}{2}\right] + (z_1 + i_1 z_2) \left[\frac{1 - i_1 i_2}{2}\right]$$

Srivastava [9] introduced the notations ${}^{1}\xi$ and ${}^{2}\xi$ for the idempotent components of the bicomplex number $\xi = z_1 + i_2 z_2$, so that

$$\boldsymbol{\xi} = {}^{1}\boldsymbol{\xi} \frac{1+i_{1}i_{2}}{2} + {}^{2}\boldsymbol{\xi} \frac{1-i_{1}i_{2}}{2}$$

Michiji Futagawa seems to have been the first to consider the theory of functions of a bicomplex variable [2,3] in 1928 and 1932.

The hyper complex system of Ringleb [7] is more general than the Algebras; he showed in 1933 that Futagawa system is a special case of his own.

In 1953 James D. Riley published a paper [6] entitled "Contributions to theory of functions of a bicomplex variable".

Throughout, the symbols C_2 , C_1 , C_0 denote the set of all bicomplex, complex and real numbers respectively.

Author α σ: Department of Mathematics, Institute of basic Science, Khandari, Dr. B.R. Ambedkar University, Agra-282002, India. e-mails: anjalisharma773@gmail.com, amitasharma234@gmail.com

a) Some special subset of C_2

We shall use notation C (i_1) , C (i_2) and H for the following sets. C (i_1) is the set of complex numbers with imaginary unit i_1 .i. e.

$$C(i_1) = \{a + i_1 b; a, b \in C_0\}$$

and C (i_2) is the set of complex numbers with imaginary unit i_2 .i. e.

$$C(i_2) = \{a + i_2 b; a, b \in C_0\}$$

The bicomplex number $\xi = (x_1+i_1x_2) + i_2(x_3+i_1x_4)$ for which $x_2 = x_3 = 0$ is called a hyperbolic number.

The set of all hyperbolic numbers is denoted by H and defined as

$$H = \{a + i_1 i_2 b; a, b \in C_0\}$$

b) Idempotent elements in C_2

There are exactly four idempotent elements in C_2 . Out of these, 0 and 1 are the trivial idempotent elements and two nontrivial idempotent elements denoted by e_1 and e_2 which are defined as

$$e_1 = \frac{1 + i_1 i_2}{2}$$
 and $e_2 = \frac{1 - i_1 i_2}{2}$

Obviously $(e_1)^n = e_1, (e_2)^n = e_2$

$$e_1 + e_2 = 1, e_1 \cdot e_2 = 0$$

 C_1 is a field but C_2 is not a field, since C_2 has divisor of zero for example $e_1\;e_2=0$ neither e_1 is zero nor e_2 is zero.

Every bicomplex number $\pmb{\xi}$ has unique idempotent representation as complex combination of e_1 and e_2 as follows

$$\xi = z_1 + i_2 z_1 = (z_1 - i_1 z_2) e_1 + (z_1 + i_1 z_2) e_2$$

The complex numbers $(z_1 - i_1 z_2)$ and $(z_1 + i_1 z_2)$ are called idempotent component of ξ and are denoted by ${}^1\xi$ and ${}^2\xi$ respectively (cf. Srivastava [9]). Thus $\xi = {}^1\xi e_1 + {}^2\xi e_2$

There are infinite numbers of element in C_2 which do not possess multiplicative inverse. A bicomplex number $\xi = z_1 + i_2 z_1$ is singular if and only if $|z_1^2 + z_2^2| = 0$ The set of all singular elements in C_2 is denoted by O_2 .

Evidently a nonzero bicomplex number ξ is singular if and only if either ${}^{1}\xi = 0$ or ${}^{2}\xi = 0$ that is if and only if it is a complex multiple of either e_{1} or e_{2} .

c) Algebraic properties of idempotent components

The idempotent representation is perfectly compatible with the algebraic structure of C_2 in the following way

For all ξ , η in C_2

$$\xi \pm \eta \equiv ({}^{1}\xi e_{1} + {}^{2}\xi e_{2}) \pm ({}^{1}\eta e_{1} + {}^{2}\eta e_{2})$$
$$= ({}^{1}\xi \pm {}^{1}\eta)e_{1} + ({}^{2}\xi \pm {}^{2}\eta)e_{2}$$

© 2018 Global Journals

 ${}^{1}(\xi + n) = {}^{1}\xi + {}^{1}n$ and ${}^{2}(\xi + n) = {}^{2}\xi + {}^{2}n$

so that

 N_{otes}

$$\alpha\xi = \alpha \quad ({}^{1}\xi e_{1} + {}^{2}\xi e_{2})$$

$$= \alpha \quad ({}^{1}\xi) e_{1} + \alpha \quad ({}^{2}\xi) e_{2}, \quad \forall \alpha \in C_{1}$$

$${}^{1}(\alpha\xi) = \alpha {}^{1}\xi \text{ and } {}^{2}(\alpha\xi) = \alpha {}^{2}\xi \text{ for } \alpha \in C_{1}$$

$$\xi\eta = \quad ({}^{1}\xi e_{1} + {}^{2}\xi e_{2}) \cdot ({}^{1}\eta e_{1} + {}^{2}\eta e_{2})$$

$$= ({}^{1}\xi {}^{1}\eta)e_{1} + ({}^{2}\xi {}^{2}\eta)e_{2},$$

so that

$${}^{1}(\xi\eta) = {}^{1}\xi {}^{1}\eta \text{ and } {}^{2}(\xi\eta) = {}^{2}\xi {}^{2}\eta$$

$$\frac{\xi}{\eta} = {\binom{1}{\xi}e_{1} + {}^{2}\xie_{2}}{\binom{1}{\eta}e_{1} + {}^{2}\eta e_{2}}$$

$$= {\binom{1}{\xi}}{\binom{1}{\eta}e_{1}} + {\binom{2}{\xi}}{\binom{2}{\eta}e_{2}}, \quad provided \eta \notin O_{2}$$

$${}^{1}\left(\frac{\xi}{\eta}\right) = {}^{\frac{1}{\xi}}{\binom{1}{\eta}} \text{ and } {}^{2}\left(\frac{\xi}{\eta}\right) = {}^{\frac{2}{\xi}}{\binom{2}{\eta}}$$

so that

d) Norm in $C_2[5]$ The norm of a bicomplex number

$$\begin{split} \xi &= z_1 + i_2 z_2 = x_1 + i_1 x_2 + i_2 x_3 + i_1 i_2 x_4 = {}^1 \xi \ e_1 + {}^2 \xi \ e_2 \text{ is defined as} \\ \|\xi\| &= (x_1{}^2 + x_2{}^2 + x_3{}^2 + x_4{}^2)^{1/2} \\ &= (|z_1|^2 + |z_2|^2)^{1/2} \\ &= \sqrt{\frac{|\xi|^2 + |\xi|^2}{2}} \end{split}$$

 \mathcal{C}_2 becomes a modified Banach algebra, in the sense that $\xi,\eta\in C_2$, we have, In general $\|\xi.\eta\|\leq \sqrt{2}\,\|\xi\|\,\|\eta\|$

e) Conjugates of a bicomplex number

Analogous to the concept of conjugate of a complex number, conjugates of a bicomplex number are also defined. As a bicomplex number is four dimensional, different types of conjugate arise.

In bicomplex space C_2 , every number ξ possesses three types of conjugates. The i_1 conjugate, i_2 conjugate and i_2i_2 conjugate of $\xi = z_1 + i_2z_2 = x_1 + i_1x_2 + i_2x_3 + i_1i_2x_4 = {}^1\xi e_1 + {}^2\xi e_2$ are denoted by $\overline{\xi}$, $\xi^{\tilde{-}}$ and $\xi^{\#}$ respectively, therefore

$$\overline{\xi} = (x_1 - i_1 x_2) + i_2 (x_3 - i_1 x_4)$$
$$= (\overline{z_1} + i_2 \overline{z_2})$$
$$= (\overline{z_2} e_1 + \overline{z_2} e_2)$$

$$\xi^{\sim} = (x_1 + i_1 x_2) - i_2 (x_3 + i_1 x_4)$$

= $(z_1 - i_2 z_2)$
= $({}^2 \xi e_1 + {}^1 \xi e_2)$
 $\xi^{\#} = (x_1 - i_1 x_2) - i_2 (x_3 - i_1 x_4)$
= $(\overline{z_1} - i_2 \overline{z_2})$
= $({}^{\overline{1\xi}} e_1 + {}^{\overline{2\xi}} e_2)$

II. CERTAIN RESULTS FROM BICOMPLEX MATRICES

Notes

a) Some Definitions

2.1.1 Bicomplex matrices

A matrix $A=[\xi_{mn}]_{m\times n} whose entries belong in <math display="inline">C_2,$ is said to be a bicomplex matrix i.e. we define

$$\mathbf{A} = \begin{bmatrix} \xi_{11} & \xi_{12} & -- & \xi_{1n} \\ \xi_{21} & \xi_{22} & -- & \xi_{2n} \\ - & - & -- & - \\ \xi_{m1} & \xi_{m2} & -- & \xi_{mn} \end{bmatrix} \forall \xi_{pq} \in \mathbf{C}_2$$

Where $1 \le p \le m$ and $1 \le q \le n$

Since every bicomplex number $\pmb{\xi}$ has unique idempotent representation as complex combination of e_1 and e_2 as follows

$$\boldsymbol{\xi} = \mathrm{z}_1 + \mathrm{i}_2 \mathrm{z}_2 = (\mathrm{z}_1 - \mathrm{i}_1 \mathrm{z}_2) \mathrm{e}_1 + (\mathrm{z}_1 + \mathrm{i}_1 \mathrm{z}_2) \mathrm{e}_2$$

Therefore every bicomplex matrices $A = [\xi_{mn}]_{m \times n}$ can be expressed uniquely as ${}^{1}Ae_{1}+ {}^{2}Ae_{2}$ such that ${}^{1}A = [z_{mn}]_{m \times n}$ and ${}^{2}A = [w_{mn}]_{m \times n}$ are complex matrices.

2.1.2 Bicomplex square matrices

A bicomplex matrix in which the number of rows is equal to the number of columns is called a bicomplex square matrix. i.e.

$$\mathbf{A} = \begin{bmatrix} \boldsymbol{\xi}_{11} & \boldsymbol{\xi}_{12} & \cdots & \boldsymbol{\xi}_{1n} \\ \boldsymbol{\xi}_{21} & \boldsymbol{\xi}_{22} & \cdots & \boldsymbol{\xi}_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \boldsymbol{\xi}_{n1} & \boldsymbol{\xi}_{n2} & \cdots & \boldsymbol{\xi}_{nn} \end{bmatrix}; \boldsymbol{\xi}_{pq} \in \mathbf{C}_2; \, \mathbf{p}, \, \mathbf{q} = 1, 2, \dots, \mathbf{n}$$

2.1.3 Bicomplex diagonal matrices

A bicomplex square matrix A is called a diagonal matrix if all its non-diagonal elements are zero i.e.

$$\mathbf{A} = \begin{bmatrix} \xi_{11} & 0 & \dots & 0 \\ 0 & \xi_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \xi_{nn} \end{bmatrix}, \quad \xi_{pq} \in \mathbf{C}_2$$

2.1.4 Determinant of a bicomplex matrix

Let $A = [\xi_{ij}]_{n \times n}$ be a bicomplex square matrix of order n, where n is some positive integer. The determinant of A, is defined as

$$\det A = |A| = |[\xi_{ij}]|, \ \xi_{ij} \in \mathcal{C}_2$$
$$\det A = |A| = \sum_{\sigma \in S_n} Sig.(\sigma) \prod_{i=1}^n \xi_{i\sigma(i)}$$

Where S_n is the group of all permutation on 'n' symbols.

2.1.5 Transpose of a bicomplex matrix

Notes

If $A = [\xi_{m n}]_{m \times n}$ is any bicomplex matrix then A matrix of order $n \times m$ obtained from 'A' by changing its rows into columns and its columns into rows is called transpose of 'A' and is denoted by A^{T} .

2.1.6 Cofactor and adjoint matrix of a matrix in C_2

Let $A = [\xi_{ij}]_{n \times n}$ be a bicomplex square matrix of order n then cofactor of the entry ξ_{ij} is defined as $(-1)^{i+j} \times$ the determinant obtained by leaving the row and the column(In the matrix A) passing through the entry $\xi_{ij} = \eta_{ij}$ (say).

Then the matrix $[\eta_{ij}]_{n \times n}$ is defined as the cofactor matrix of A and the transpose of cofactor matrix of A is known as adjoint matrix of A. i.e. $AdjA = [\eta_{ij}]^{T_{n \times n}}$

2.1.7 Bicomplex singular and non-singular matrix

A bicomplex Square matrix is said to be non-singular if $|A| \notin O_2$ (set of all singular element in C_2).

and If $|A| \in O_2$ then it is called singular matrix.

b) Algebraic structure of bicomplex Matrices

Let S be the set of all bicomplex square matrices of order n. Define binary compositions over S called addition "+", scalar multiplication "." and multiplication " \times " as follows:

$$\text{LetA} = \begin{bmatrix} \xi_{11} & \xi_{12} & \cdots & \xi_{1n} \\ \xi_{21} & \xi_{22} & \cdots & \xi_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \xi_{n1} & \xi_{n2} & \cdots & \xi_{nn} \end{bmatrix} \text{and}$$
$$\text{B} = \begin{bmatrix} \eta_{11} & \eta_{12} & \cdots & \eta_{1n} \\ \eta_{21} & \eta_{22} & \cdots & \eta_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \eta_{n1} & \eta_{n2} & \cdots & \eta_{nn} \end{bmatrix}$$

be the arbitrary member of S and $\alpha \in F$, where F is either field of real numbers or complex numbers.

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} \xi_{11} + \eta_{11} & \xi_{12} + \eta_{12} & \dots & \xi_{1n} + \eta_{1n} \\ \xi_{21} + \eta_{21} & \xi_{22} + \eta_{22} & \dots & \xi_{2n} + \eta_{2n} \\ \dots & \dots & \dots & \dots \\ \xi_{n1} + \eta_{n1} & \xi_{n2} + \eta_{n2} & \dots & \xi_{nn} + \eta_{nn} \end{bmatrix}$$
$$\boldsymbol{\alpha} \cdot \mathbf{A} = \begin{bmatrix} \alpha\xi_{11} & \alpha\xi_{12} & \dots & \alpha\xi_{1n} \\ \alpha\xi_{21} & \alpha\xi_{22} & \dots & \alpha\xi_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha\xi_{1n} & \alpha\xi_{2n} & \dots & \alpha\xi_{nn} \end{bmatrix} \cdot and \quad A \times B = \begin{bmatrix} \xi_{11}\eta_{11} + \dots + \xi_{1n}\eta_{n1} & \dots - \xi_{11}\eta_{1n} + \dots + \xi_{1n}\eta_{nn} \\ \xi_{21}\eta_{11} + \dots + \xi_{2n}\eta_{n1} & \dots - \xi_{21}\eta_{1n} + \dots + \xi_{2n}\eta_{nn} \\ \dots & \dots & \dots & \dots \\ \xi_{n1}\eta_{11} + \dots + \xi_{nn}\eta_{n1} & \dots & \xi_{nn} \end{bmatrix}$$

Notes

nn

2.2.1 Theorem: The set of all bicomplex square matrices i.e "S" forms an algebra. Proof:

- Additive abelian group structure a.
- Associativity: •

Let A = $[\xi_{ij}]_{n \times n}$, B = $[\eta_{ij}]_{n \times n}$ and C = $[\zeta_{ij}]_{n \times n}$ be the member of S and $\alpha, \beta \in F$ then

$$A + (B + C) = \begin{bmatrix} \xi_{11} + (\eta_{11} + \xi_{11}) & \dots & \xi_{1n} + (\eta_{1n} + \xi_{1n}) \\ \xi_{21} + (\eta_{21} + \xi_{21}) & \dots & \xi_{2n} + (\eta_{2n} + \xi_{2n}) \\ \dots & \dots & \dots & \dots \\ \xi_{n1} + (\eta_{n1} + \xi_{n1}) & \dots & \xi_{nn} + (\eta_{nn} + \xi_{nn}) \end{bmatrix}$$
$$(A + B) + C = \begin{bmatrix} (\xi_{11} + \eta_{11}) + \xi_{11} & \dots & (\xi_{1n} + (\eta_{1n}) + \xi_{1n}) \\ (\xi_{21} + \eta_{21}) + \xi_{21} & \dots & (\xi_{2n} + \eta_{2n}) + \xi_{2n} \\ \dots & \dots & \dots \\ (\xi_{n1} + \eta_{n1}) + \xi_{n1} & \dots & (\xi_{nn} + \eta_{nn}) + \xi_{nn} \end{bmatrix}$$

Since C_2 is an algebra

Therefore A + (B + C) = (A + B) + C

Identity: $\forall A \in S \exists$ null matrix "0" $\in S$ then A + 0 = A i.e

$$\begin{bmatrix} \xi_{11} & \xi_{12} & \cdots & \xi^{1n} \\ \xi_{21} & \xi_{22} & \cdots & \xi_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \xi_{n1} & \xi_{n2} & \cdots & \xi_{nn} \end{bmatrix} + \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} \xi_{11} & \xi_{12} & \cdots & \xi^{1n} \\ \xi_{21} & \xi_{22} & \cdots & \xi_{2n} \\ \cdots & \cdots & \cdots \\ \xi_{n1} & \xi_{n2} & \cdots & \xi_{nn} \end{bmatrix}$$

So 0 is the additive identity.

• Inverse:

 $\forall A \in S \exists -A \in S \text{ such that} -A + A = 0 \text{ i.e.}$

$$\begin{vmatrix} -\xi_{11} & -\xi_{12} & \dots & -\xi_{1n} \\ -\xi_{21} & -\xi_{22} & \dots & -\xi_{2n} \\ \dots & \dots & \dots & \dots \\ -\xi_{n1} & -\xi_{n2} & \dots & -\xi_{nn} \end{vmatrix} + \begin{vmatrix} \xi_{11} & \xi_{12} & \dots & \xi_{1n} \\ \xi_{21} & \xi_{22} & \dots & \xi_{2n} \\ \dots & \dots & \dots & \dots \\ \xi_{n1} & \xi_{n2} & \dots & \xi_{nn} \end{vmatrix} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Therefore "-A" is the additive inverse of A.

• Commutative:

Since

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} \xi_{11} + \eta_{11} & \xi_{12} + \eta_{12} & \dots & \xi_{1n} + \eta_{1n} \\ \xi_{21} + \eta_{21} & \xi_{22} + \eta_{22} & \dots & \xi_{2n} + \eta_{2n} \\ \dots & \dots & \dots & \dots \\ \xi_{n1} + \eta_{n1} & \xi_{n2} + \eta_{n2} & \dots & \xi_{nn} + \eta_{nn} \end{bmatrix}$$

And

 N_{otes}

$$\mathbf{B} + \mathbf{A} = \begin{bmatrix} \eta_{11} + \xi_{11} & \eta_{12} + \xi_{12} & \dots & \eta_{1n} + \xi_{1n} \\ \eta_{21} + \xi_{21} & \eta_{22} + \xi_{22} & \dots & \eta_{2n} + \xi_{2n} \\ \dots & \dots & \dots & \dots \\ \eta_{n1} + \xi_{n1} & \eta_{n2} + \xi_{n2} & \dots & \eta_{nn} + \xi_{nn} \end{bmatrix}$$

Therefore A + B = B + A as C_2 is an algebra. So S is abelian group under addition

- b. Ring structure
 - Closure:

Since

$$A \times B = \begin{bmatrix} \xi_{11}\eta_{11} + \dots + \xi_{1n}\eta_{n1} & -\cdots & \xi_{11}\eta_{1n} + \dots + \xi_{1n}\eta_{nn} \\ \xi_{21}\eta_{11} + \dots + \xi_{2n}\eta_{n2} & -\cdots & \xi_{21}\eta_{1n} + \dots + \xi_{2n}\eta_{nn} \\ & \cdots & \cdots & \cdots \\ \xi_{n1}\eta_{11} + \dots + \xi_{nn}\eta_{n1} & \cdots & \xi_{n1}\eta_{1n} + \dots + \xi_{nn}\eta_{nn} \end{bmatrix}$$

Therefore it is evident that $A \times B \in S$ Therefore S is closed under multiplication

• Associativity: $\forall A, B, C \in S$ Let $A = [\xi_{ij}]_{n \times n}$, $B = [\eta_{ij}]_{n \times n}$ and $C = [\varsigma_{ij}]_{n \times n}$ The ithjth entry of $(A \times B) \times C = [i^{th} row of (A \times B)] \times [j^{th} column of C]$ $= [i^{th} row of A] \times B \times [j^{th} column of C]$ Now the ithjth entry of $A \times (B \times C) = [i^{th} row of A] \times [j^{th} column of (B \times C)]$ $= [i^{th} row of A] \times B \times [j^{th} column of C]$ Therefore the ithjth entry of $(A \times B) \times C = i^{th}j^{th}$ entry of $A \times (B \times C)$ Hence $(A \times B) \times C = A \times (B \times C)$ *Distribution law:* We can easily show that $(A + B) \times C = A \times C + B \times C$ and $A \times (B + C) = A \times B + A \times C$

٦

 $N_{\rm otes}$

c. Linear space structure

$$\begin{aligned} \mathbf{\alpha}.(\mathbf{A} + \mathbf{B}) &= \mathbf{\alpha}. \begin{bmatrix} \xi_{11} + \eta_{11} & \xi_{12} + \eta_{12} & \dots & \xi_{1n} + \eta_{1n} \\ \xi_{21} + \eta_{21} & \xi_{22} + \eta_{22} & \dots & \xi_{2n} + \eta_{2n} \\ \dots & \dots & \dots & \dots \\ \xi_{n1} + \eta_{n1} & \xi_{n2} + \eta_{n2} & \dots & \alpha(\xi_{1n} + \eta_{1n}) \\ \alpha(\xi_{21} + \eta_{21}) & \alpha(\xi_{22} + \eta_{22}) & \dots & \alpha(\xi_{2n} + \eta_{2n}) \\ \dots & \dots & \dots & \dots \\ \alpha(\xi_{n1} + \eta_{n1}) & \alpha(\xi_{n2} + \eta_{n2}) & \dots & \alpha(\xi_{nn} + \eta_{nn}) \end{bmatrix} = \begin{bmatrix} \alpha\xi_{11} & \alpha\xi_{12} & \dots & \alpha\xi_{1n} \\ \alpha\xi_{21} & \alpha\xi_{22} & \dots & \alpha\xi_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha\xi_{n1} & \alpha\eta_{n2} & \dots & \alpha\xi_{n2} + \eta_{n2} \end{bmatrix} + \\ \begin{bmatrix} \alpha\eta_{11} & \alpha\eta_{12} & \dots & \alpha\eta_{1n} \\ \alpha\eta_{21} & \alpha\eta_{22} & \dots & \alpha\eta_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha\eta_{n1} & \alpha\eta_{n2} & \dots & \eta_{nn} \end{bmatrix} = \alpha \begin{bmatrix} \xi_{11} & \xi_{12} & \dots & \xi_{1n} \\ \xi_{21} & \xi_{22} & \dots & \xi_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \xi_{n1} & \xi_{n2} & \dots & \xi_{nn} \end{bmatrix} + \alpha \begin{bmatrix} \eta_{11} & \eta_{12} & \dots & \eta_{1n} \\ \eta_{21} & \eta_{22} & \dots & \eta_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \eta_{n1} & \eta_{n2} & \dots & \eta_{nn} \end{bmatrix} \end{aligned}$$

Therefore $\alpha.(A + B) = \alpha.A + \alpha.B$

$$(\alpha\beta).A = (\alpha\beta). \begin{bmatrix} \xi_{11} & \xi_{12} & - & \xi_{1n} \\ \xi_{21} & \xi_{22} & - & \xi_{2n} \\ - & - & - & - \\ \xi_{n1} & \xi_{n2} & - & \xi_{nn} \end{bmatrix} = \begin{bmatrix} (\alpha\beta)\xi_{11} & (\alpha\beta)\xi_{12} & - & (\alpha\beta)\xi_{1n} \\ (\alpha\beta)\xi_{21} & (\alpha\beta)\xi_{22} & - & (\alpha\beta)\xi_{2n} \\ - & - & - & - \\ (\alpha\beta)\xi_{n1} & (\alpha\beta)\xi_{n2} & - & (\alpha\beta)\xi_{nn} \end{bmatrix} (\alpha\beta).A = \alpha \begin{bmatrix} \beta\xi_{11} & \beta\xi_{12} & - & \beta\xi_{1n} \\ \beta\xi_{21} & \beta\xi_{22} & - & \beta\xi_{2n} \\ - & - & - & - \\ \beta\xi_{1n} & \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n} & \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n} & \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n} & \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n} & \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n} & \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n} & \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n} & \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n} & \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n} & - & - \\ \beta\xi_{2n} & - & - & - \\ \beta\xi_{2n}$$

Therefore $(\alpha\beta).A = \alpha.(\beta.A)$

$$(\alpha + \beta) \cdot A = (\alpha + \beta) \cdot \begin{bmatrix} \xi_{11} & \xi_{12} & \cdots & \xi_{1n} \\ \xi_{21} & \xi_{22} & \cdots & \xi_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \xi_{n1} & \xi_{n2} & \cdots & \xi_{nn} \end{bmatrix} = \alpha \cdot \begin{bmatrix} \xi_{11} & \xi_{12} & \cdots & \xi_{1n} \\ \xi_{21} & \xi_{22} & \cdots & \xi_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \xi_{n1} & \xi_{n2} & \cdots & \xi_{nn} \end{bmatrix} + \beta \cdot \begin{bmatrix} \xi_{11} & \xi_{12} & \cdots & \xi_{1n} \\ \xi_{21} & \xi_{22} & \cdots & \xi_{2n} \\ \cdots & \cdots & \cdots \\ \xi_{n1} & \xi_{n2} & \cdots & \xi_{nn} \end{bmatrix}$$
(3)

Therefore $(\alpha + \beta).A = \alpha.A + \beta.A$

(4) It is evident that 1.A = A for all A in S and $1 \in F$

d. Consistency between multiplication and scalar multiplication

$$\alpha.(A \times B) = (\alpha.A) \times B = A \times (\alpha.B)$$

$$\alpha.(A \times B) = \alpha. \begin{cases} \xi_{11} & \xi_{12} & \dots & \xi_{1n} \\ \xi_{21} & \xi_{22} & \dots & \xi_{2n} \\ \dots & \dots & \dots & \dots \\ \xi_{n1} & \xi_{n2} & \dots & \xi_{nn} \end{cases} \times \begin{bmatrix} \eta_{11} & \eta_{12} & \dots & \eta_{1n} \\ \eta_{21} & \eta_{22} & \dots & \eta_{2n} \\ \dots & \dots & \dots & \dots \\ \eta_{1n} & \eta_{2n} & \dots & \eta_{nn} \end{bmatrix}$$

$$\alpha. (A \times B) = \alpha. \begin{bmatrix} \xi_{11}\eta_{11} + \dots + \xi_{1n}\eta_{n1} & --- & \xi_{11}\eta_{1n} + \dots + \xi_{1n}\eta_{nn} \\ \xi_{21}\eta_{11} + \dots + \xi_{2n}\eta_{n2} & --- & \xi_{21}\eta_{1n} + \dots + \xi_{2n}\eta_{nn} \\ & --- & --- \\ \xi_{n1}\eta_{11} + \dots + \xi_{nn}\eta_{n1} & --- & \xi_{n1}\eta_{1n} + \dots + \xi_{nn}\eta_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} \alpha(\xi_{11}\eta_{11}) + \dots + \alpha(\xi_{1n}\eta_{n1}) & --- & \alpha(\xi_{11}\eta_{1n}) + \dots + \alpha(\xi_{1n}\eta_{nn}) \\ \alpha(\xi_{21}\eta_{11}) + \dots + \alpha(\xi_{2n}\eta_{n2}) & --- & \alpha(\xi_{21}\eta_{1n}) + \dots + \alpha(\xi_{2n}\eta_{nn}) \\ & --- & --- \\ \alpha(\xi_{n1}\eta_{11}) + \dots + \alpha(\xi_{nn}\eta_{n1}) & --- & \alpha(\xi_{n1}\eta_{1n}) + \dots + \alpha(\xi_{nn}\eta_{nn}) \end{bmatrix}$$

Since \mathbf{C}_2 is an algebra

Therefore $\alpha.(A \times B) = (\alpha.A) \times B = A \times (\alpha.B)$ Hence it proves that S is an algebra.

2.2.2 Theorem: Let $A = [\xi_{i j}]_{n \times n}$ be a bicomplex square matrix then det $A = (det^1 A) e_1 + (det^2 A) e_2$.

Proof:

Let

 $\mathbf{N}_{\mathrm{otes}}$

$$\mathbf{A} = \begin{bmatrix} \xi_{11} & \xi_{12} & \cdots & \xi_{1n} \\ \xi_{21} & \xi_{22} & \cdots & \xi_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \xi_{n1} & \xi_{n2} & \cdots & \xi_{nn} \end{bmatrix}$$

 $\det {}^{\scriptscriptstyle 1}\!\mathrm{A}= \left|\left[{}^{\scriptscriptstyle 1}\!\xi_{\scriptscriptstyle ij}\right]_{n\times n}\right|$

From 2.1.4,

$$|A| = \left| \begin{bmatrix} \xi_{11} & \xi_{12} & \cdots & \xi_{1n} \\ \xi_{21} & \xi_{22} & \cdots & \xi_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \xi_{n1} & \xi_{n2} & \cdots & \xi_{nn} \end{bmatrix} \right|$$

$$\therefore detA = |A| = \sum_{\sigma \in S_n} Sig.(\sigma) \prod_{i=1}^n \xi_{i\sigma(i)}$$

$$= \left[\sum_{\sigma \in S_n} Sig.(\sigma) \prod_{i=1}^n \xi_{i\sigma(i)} \right] e_1 + \left[\sum_{\sigma \in S_n} Sig.(\sigma) \prod_{i=1}^n \xi_{i\sigma(i)} \right] e_2$$

As $\xi.\eta = ({}^1\xi^1\eta) e_1 + ({}^2\xi^2\eta) e_2$ and $\xi+\eta = ({}^1\xi+{}^1\eta) e_1 + ({}^2\xi+{}^2\eta) e_2$

Since

$$= \left[\sum_{\sigma \in S_n} Sig.(\sigma) \prod_{i=1}^n \zeta_{i\sigma(i)}\right]$$

And

$$\mathrm{det}^{2}\mathbf{A} = \left| \left[{}^{2}\xi_{ij} \right]_{n \times n} \right|$$

$$= \left[\sum_{\sigma \in S_n} Sig.(\sigma) \prod_{i=1}^n {}^{_{2}}\xi_{i\sigma(i)}\right]$$

Notes

Therefore det $A = (det^1 A) e_1 + (det^2 A) e_2$

2.2.3 Theorem: If the determinant of A is non-singular then $| {}^{1}A | \neq 0$ and $| {}^{2}A | \neq 0$. *Proof:*

Suppose

A =	ξ ₁₁ ξ ₂₁	ξ ₁₂ ξ ₂₂	·····	$\left. \begin{matrix} \xi_{1n} \\ \xi_{2n} \end{matrix} \right $
		••••	••••	
	ξ_{n1}	ξ_{n2}		ξ _{nn}]

From 2.2.2, det A = (det¹A) e₁ + (det²A) e₂ since det A is non-singular therefore det A = [(det¹A) e₁ + (det²A) e₂] \notin O₂ (Since (¹ ξ e₁ + ² ξ e₂) \notin O₂ then ¹ ξ e₁ and ² ξ e₂ both are non-zero) Hence $| {}^{1}A | \neq 0$ and $| {}^{2}A | \neq 0$ 2.2.4 Theorem: Let A be a bicomplex matrix then A^T = ¹A^T e₁ + ²A^T e₂.

Proof:

Let $A = [\xi_{i\,j}]_{\ m X \, n} \, be$ a bicomplex matrix then

$$\begin{split} A^{T} &= \begin{bmatrix} \xi_{11} & \xi_{21} & \cdots & \xi_{m1} \\ \xi_{12} & \xi_{22} & \cdots & \xi_{m2} \\ \cdots & \cdots & \cdots & \cdots \\ \xi_{1n} & \xi_{2n} & \cdots & \xi_{mn} \end{bmatrix} \\ A^{T} &= \begin{bmatrix} 1\xi_{11} & 1\xi_{21} & \cdots & 1\xi_{m1} \\ 1\xi_{12} & 1\xi_{22} & \cdots & 1\xi_{m2} \\ \cdots & \cdots & \cdots & \cdots \\ 1\xi_{1n} & 1\xi_{2n} & \cdots & 1\xi_{mn} \end{bmatrix} e_{1} + \end{split}$$

$$\begin{bmatrix} 2\xi_{11} & 2\xi_{21} & \dots & 2\xi_{m1} \\ 2\xi_{12} & 2\xi_{22} & \dots & 2\xi_{m2} \\ \dots & \dots & \dots & \dots \\ 2\xi_{1n} & 2\xi_{2n} & \dots & 2\xi_{mn} \end{bmatrix}^{e}_{2}$$

Therefore $A^{T} = {}^{1}A^{T} e_{1} + {}^{2}A^{T} e_{2}$

2.2.5 Theorem: Let A be a bicomplex square matrix then cofactor matrix of A = (cofactor matrix of ¹A) e_1 +(cofactor matrix of ²A) e_2 .

Proof:

Notes

Let $A = [\xi_{i\,j}]_{n \times n}$ be a bicomplex square matrix then ${}^{1}A = [{}^{1}\xi_{i\,j}]_{n \times n}$ and ${}^{2}A = [{}^{2}\xi_{i\,j}]_{n \times n}$ Now the ith jth entry of cofactor matrix of A =cofactor of the entry $\xi_{i\,j}$

=(-1)^{i+j} × the determinant obtained by leaving the row and the column(in the matrix A) passing through the entry $\xi_{i\,j}$

= $(-1)^{i+j} \times [\{\text{the determinant obtained by leaving the row and the column(in the matrix ^1A) passing through the entry <math>{}^{1}\xi_{i\ j}\}e_{1} + \{\text{the determinant obtained by leaving the row and the column(in the matrix ^2A) passing through the entry <math>{}^{2}\xi_{i\ j}\}e_{2}]$

= (cofactor of the entry ${}^1\!\xi_{i\ j}$ in the matrix ${}^1\!A)$ e_1 +(cofactor of the entry ${}^2\!\xi_{i\ j}$ in the matrix ${}^2\!A)$ e_2

Therefore the $i^{th} j^{th}$ entry of cofactor matrix of $A = (The i^{th} j^{th} entry of cofactor matrix of ¹A) <math>e_1 + (The i^{th} j^{th} entry of cofactor matrix of ²A) e_2$

Hence it proves that cofactor matrix of A = (cofactor matrix of ${}^{1}A$) e_{1} +(cofactor matrix of ${}^{2}A$) e_{2}

Theorem 2.2.4 and 2.2.5 submerge together to give a new corollary which is started below.

2.2.6 Corollary: If $A = [\xi_{i j}]_{m \times n}$ is a bicomplex square matrix then $adj A = [adj^{1}A]e_{1} + [adj^{2}A]e_{2}$.

c) Inversion of bicomplex matrix by two techniques

2.3.1 Inverse of a bicomplex square matrix with the help of adjoint matrix

Let $A = [\xi_{ij}]_{n \times n}$ be a square and non-singular matrix whose elements are in C_2 and From 2.1.1, 2.2.2 and 2.2.6

We have $A = {}^{1}A e_{1} + {}^{2}A e_{2}$, $|A| = |{}^{1}A|e_{1} + |{}^{2}A|e_{2}$ And adj $A = [adj^{1}A] e_{1} + [adj^{2}A] e_{2}$ Now $A \times (Adj.A) = [{}^{1}A e_{1} + {}^{2}A e_{2}] \times [Adj.({}^{1}A)e_{1} + Adj.({}^{2}A)e_{2}]$ $= ({}^{1}A.Adj.{}^{1}A) e_{1} + ({}^{2}A.Adj.{}^{2}A) e_{2} \text{ (since } e_{1}.e_{2} = 0)$ $= (|{}^{1}A|.I) e_{1} + (|{}^{2}A|.I) e_{2},$

Since ¹A, ²A and I are complex matrices.

Therefore $A \times (Adj.A) = (|^{1}A| e_{1} + |^{2}A|e_{2}).I$, where the matrix I is a bicomplex matrix.(since there is no difference between the identity matrix in C₁ and the identity matrix in C₂ of same order.)

Therefore $A \times (Adj.A) = |A|.I$

$$\therefore |A| \notin O_2$$

$$\therefore A \times \frac{AdjA}{|A|} = 1$$

$$\Rightarrow A^{-1} = \frac{AdjA}{|A|}$$

$$\therefore (|^1A| \neq 0 \text{ and } |^2A| \neq 0)$$

Now construct

Year 2018

 $\frac{{}^{1}A.(Adj {}^{1}A)}{|{}^{1}A|} e_{_{1}} + \frac{{}^{2}A.(Adj {}^{2}A)}{|{}^{2}A|} e_{_{2}}$ $= ({}^{1}A {}^{1}A^{-1}) e_{_{1}} + ({}^{2}A {}^{2}A^{-1}) e_{_{2}}$ $= I e_{_{1}} + I e_{_{2}} = I$ $= A \times \frac{AdjA}{|A|}$

Hence $A^{-1} = \frac{AdjA}{|A|}$ and

 $A \times \frac{AdjA}{|A|} = \frac{{}^{1}A.(Adj^{1}A)}{|{}^{1}A|} e_{1} + \frac{{}^{2}A.(Adj^{2}A)}{|{}^{2}A|} e_{2}$

2.3.2 Inverse of bicomplex square matrix with the help of idempotent technique If $M = [\xi_{ij}]_{n \times n}$ is a square and nonsingular bicomplex matrix of order n Therefore $M = {}^{1}M e_{1} + {}^{2}M e_{2}$ Since $|M| \notin O_{2}$ therefore $|{}^{1}M| \neq 0$ and $|{}^{2}M| \neq 0$

i.e. ¹M and ² M are invertible. Let the inverse of both ¹M and ²M be $[z_{ij}]_{n\times n}$ and $[w_{ij}]_{n\times n}$ respectively. Now construct a new matrix with the help of $[z_{ij}]_{n\times n}$ and $[w_{ij}]_{n\times n}$ as

$$[z_{ij}]_{n\times n} \mathbf{e}_1 + [w_{ij}]_{n\times n} \mathbf{e}_2 = [\eta_{ij}]_{n\times n} \text{ (say)}$$

Now we claim that $[\eta_{ij}]_{n \times n}$ is the inverse of M. Note that

$$\begin{split} \left[\xi_{ij}\right]_{n\times n} \times \left[\eta_{ij}\right]_{n\times n} &= \left(\left[{}^{\scriptscriptstyle 1}\xi_{ij}\right]_{n\times n} e_1 + \left[{}^{\scriptscriptstyle 2}\xi_{ij}\right]_{n\times n} e_2\right) \times \left(\left[{}^{\scriptscriptstyle 1}\eta_{ij}\right]_{n\times n} e_1 + \left[{}^{\scriptscriptstyle 2}\eta_{ij}\right]_{n\times n} e_2\right) \\ &= \left(\left[{}^{\scriptscriptstyle 1}\xi_{ij}\right]_{n\times n} \left[{}^{\scriptscriptstyle 1}\eta_{ij}\right]_{n\times n}\right) e_1 + \left(\left[{}^{\scriptscriptstyle 2}\xi_{ij}\right]_{n\times n} \left[{}^{\scriptscriptstyle 2}\eta_{ij}\right]_{n\times n}\right) e_2 \end{split}$$

Global Journal of Science Frontier Research (F) Volume XVIII Issue II Version I

Since

$$\begin{bmatrix} {}^{\scriptscriptstyle 1}\eta_{ij} \end{bmatrix}_{n imes n} = \begin{bmatrix} z_{ij} \end{bmatrix}_{n imes n} ext{ and } \begin{bmatrix} {}^{\scriptscriptstyle 2}\eta_{ij} \end{bmatrix}_{n imes n} = \begin{bmatrix} w_{ij} \end{bmatrix}_{n imes n}$$

$$\therefore [\xi_{ij}]_{n\times n} \times [\eta_{ij}]_{n\times n} = \mathrm{I} \, \mathrm{e}_1 + \mathrm{I} \, \mathrm{e}_2 = \mathrm{I}$$

Hence $[\eta_{ij}]_{n \times n}$ is the inverse of M.

 $N_{\rm otes}$

III. Some Special Bicomplex Matrices

a) Conjugates of a bicomplex matrix

As there are three types of conjugates of a bicomplex number, we have defined three types of conjugates of a bicomplex matrix.

3.1.1 Definition: i_1 Conjugate of a bicomlex matrix

Let $A = [\xi_{ij}]_{m \times n}$ be the bicomplex matrix then the i_1 conjugate of matrix A written as \bar{A} is the matrix obtained from A by taken i_1 conjugate of each entry of A. i.e.

\overline{A} =	$\begin{bmatrix} \overline{\xi}_{11} \\ \overline{\xi}_{21} \end{bmatrix}$	$\frac{\overline{\xi}_{12}}{\overline{\xi}_{22}}$		$\frac{\overline{\xi}_{1n}}{\overline{\xi}_{2n}}$
	 _	·····	•••••	
	ξ_{m1}	ξ_{m2}		ξmn

The idempotent representation of \bar{A} can be obtained as follows

$$\overline{A} = \begin{bmatrix} \overline{2\xi_{11}} & \overline{2\xi_{12}} & \dots & \overline{2\xi_{1n}} \\ \overline{2\xi_{21}} & \overline{2\xi_{22}} & \dots & \overline{2\xi_{2n}} \\ \dots & \dots & \dots & \dots \\ \overline{2\xi_{m1}} & \overline{2\xi_{m2}} & \dots & \overline{2\xi_{mn}} \end{bmatrix} e_1 + \begin{bmatrix} \overline{1\xi_{11}} & \overline{1\xi_{12}} & \dots & \overline{1\xi_{1n}} \\ \overline{1\xi_{21}} & \overline{1\xi_{22}} & \dots & \overline{1\xi_{2n}} \\ \dots & \dots & \dots & \dots \\ \overline{1\xi_{m1}} & \overline{1\xi_{m2}} & \dots & \overline{1\xi_{mn}} \end{bmatrix} e_2$$

It is evident that

 $(a)[(\overline{A})] = A$

(b) $\overline{kA} = \overline{k} \overline{A}$ where $k \in C_2$

Similarly the definition of i_2 and i_1i_2 conjugate of a bicomplex matrix is following.

3.1.2 Definition: i₂ Conjugate of a bicomlex matrix

Let $A = [\xi_{ij}]_{m \times n}$ be the bicomplex matrix then the i_2 conjugate of matrix A written as A^{\sim} is the matrix obtained from A by taken i_2 conjugate of each entry of A. i.e.

$$A^{\sim} = \begin{bmatrix} \xi_{11}^{\sim} & \xi_{12}^{\sim} & \dots & \xi_{1n}^{\sim} \\ \xi_{21}^{\sim} & \xi_{22}^{\sim} & \dots & \xi_{2n}^{\sim} \\ \dots & \dots & \dots & \dots \\ \xi_{m1}^{\sim} & \xi_{m2}^{\sim} & \dots & \xi_{mn}^{\sim} \end{bmatrix}$$

The idempotent representation of A^{\sim} can be obtained as follows:

$$A^{\sim} = \begin{bmatrix} 2\xi_{11} & 2\xi_{12} & \cdots & 2\xi_{1n} \\ 2\xi_{21} & 2\xi_{22} & \cdots & 2\xi_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 2\xi_{m1} & 2\xi_{m2} & \cdots & 2\xi_{mn} \end{bmatrix} e_{1}$$

$$+ \begin{bmatrix} 1\xi_{11} & 1\xi_{12} & \cdots & 1\xi_{1n} \\ 1\xi_{21} & 1\xi_{22} & \cdots & 1\xi_{2n} \\ \vdots & \vdots & \vdots \\ 1\xi_{m1} & 1\xi_{m2} & \cdots & 1\xi_{mn} \end{bmatrix} e_{2}$$
Note

It is evident that

 $(a)(A^{\sim})^{\sim} = A$

(b) $(kA)^{\sim} = k^{\sim}A^{\sim}$ where $k \in C_2$

3.1.3 Definition: i_1i_2 Conjugate of a bicomplex matrix

Let $A = [\xi_{ij}]_{m \times n}$ be the bicomplex matrix then the $i_1 i_2$ conjugate of matrix A written as $A^{\#}$ is the matrix obtained from A by taken $i_1 i_2$ conjugate of each entry of A. i.e.

$$A^{\#} = \begin{bmatrix} \xi_{11}^{\#} & \xi_{12}^{\#} & \dots & \xi_{1n}^{\#} \\ \xi_{21}^{\#} & \xi_{22}^{\#} & \dots & \xi_{2n}^{\#} \\ \dots & \dots & \dots & \dots \\ \xi_{m1}^{\#} & \xi_{m2}^{\#} & \dots & \xi_{mn}^{\#} \end{bmatrix}$$

The idempotent representation of $A^{\#}$ can be obtained as follows:

$$A^{\#} = \begin{bmatrix} \overline{1}_{\xi_{11}} & \overline{1}_{\xi_{12}} & \dots & \overline{1}_{\xi_{1n}} \\ \overline{1}_{\xi_{21}} & \overline{1}_{\xi_{22}} & \dots & \overline{1}_{\xi_{2n}} \\ \dots & \dots & \dots & \dots \\ \overline{1}_{\xi_{m1}} & \overline{1}_{\xi_{m2}} & \dots & \overline{1}_{\xi_{mn}} \end{bmatrix} e_{1} + \begin{bmatrix} \overline{2}_{\xi_{11}} & \overline{2}_{\xi_{12}} & \dots & \overline{2}_{\xi_{1n}} \\ \overline{2}_{\xi_{21}} & \overline{2}_{\xi_{22}} & \dots & \overline{2}_{\xi_{2n}} \\ \dots & \dots & \dots & \dots \\ \overline{2}_{\xi_{m1}} & \overline{2}_{\xi_{m2}} & \dots & \overline{2}_{\xi_{mn}} \end{bmatrix} e_{2}$$

It is evident that

 $(a) (A^*)^{\#} = A$

(b) $(kA)^{\#} = k^{\#}A^{\#}, k \in C_2$

b) Tranjugate of a bicomplex matrix

The transpose of conjugate of a bicomplex matrix is defined as the tranjugate of the matrix. There are three types of tranjugates of a bicomplex matrix.

3.2.1 Definition: i_1 tranjugate of a bicomplex matrix

The transpose of the i_1 conjugate of a bicomplex matrix is defined as the i_1 tranjugate of the matrix.

i.e. If $A = [\xi_{ij}]_{m \times n}$ then

$$i_{1} tranjugate \ of \ A = [\overline{A}]^{T} = \begin{bmatrix} \overline{\xi}_{11} & \overline{\xi}_{21} & \dots & \overline{\xi}_{m1} \\ \overline{\xi}_{12} & \overline{\xi}_{22} & \dots & \overline{\xi}_{m2} \\ \dots & \dots & \dots & \dots \\ \overline{\xi}_{1n} & \overline{\xi}_{2n} & \dots & \overline{\xi}_{mn} \end{bmatrix}$$

Similarly

Notes

3.2.2 Definition: i_2 tranjugate of a bicomplex matrix

The transpose of the i_2 conjugate of a bicomplex matrix is defined as the i_2 tranjugate of the matrix.

i.e. If $A = \begin{bmatrix} \xi_{ij} \end{bmatrix}_{m \times n}$ then

$$i_{2} tranjugate of A = [A^{-}]^{T} = \begin{bmatrix} \xi_{11}^{-} & \xi_{21}^{-} & \dots & \xi_{m1}^{-} \\ \xi_{12}^{-} & \xi_{22}^{-} & \dots & \xi_{m2}^{-} \\ \dots & \dots & \dots & \dots \\ \xi_{1n}^{-} & \xi_{2n}^{-} & \dots & \xi_{mn}^{-} \end{bmatrix}$$

3.2.3 Definition: i_1i_2 tranjugate of a bicomplex matrix

The transpose of the i_1i_2 conjugate of a bicomplex matrix is defined as the i_1i_2 tranjugate of the matrix.

i.e. If $A = [\xi_{ij}]_{m \times n}$ then

$$\dot{i}_{1}i_{2} tranjugate of A = [A^{\#}]^{T} = \begin{bmatrix} \xi_{11}^{\#} & \xi_{21}^{\#} & \dots & \xi_{m1}^{\#} \\ \xi_{12}^{\#} & \xi_{22}^{\#} & \dots & \xi_{m2}^{\#} \\ \dots & \dots & \dots & \dots \\ \xi_{1n}^{\#} & \xi_{2n}^{\#} & \dots & \xi_{mn}^{\#} \end{bmatrix}$$

c) Symmetric and skew – symmetric matrix in C₂
 3.3.1 Definition: Symmetric matrix

A bicomplex square matrix $A = [\xi_{ij}]_{n \times n}$ is said to be symmetric if $A = [A]^T$. Thus for a symmetric matrix A, we have $\xi_{ij} = \xi_{ji}$ for all i and j

3.3.2 Definition: Skew-symmetric matrix

A bicomplex square matrix $A = [\xi_{ij}]_{n \times n}$ is said to be skew-symmetric if $A = -[A]^T$. Thus for a skew-symmetric matrix A, we have $\xi_{ij} = -\xi_{ji}$ for all i and j

3.3.3 Theorem: The elements of principal diagonal of skew-symmetric matrix are zero. *Proof:*

We know that a matrix $A = [\xi_{ij}]_{n \times n}$ is skew - symmetric if and only if $\xi_{ij} = -\xi_{ji}$ for all i and j. For diagonal element we have $\xi_{ii} = -\xi_{ii}$ therefore

If $\xi_{ii} = z_{ii} + i_2 w_{ii}$ then $(z_{ii} + i_2 w_{ii}) = -(z_{ii} + i_2 w_{ii})$ Therefore $z_{ii} = 0$, $w_{ii} = 0$ i.e. $\xi_{ii} = 0$ for all i

d) Hermitian matrix in C_2

Corresponding to the three types of conjugates in C_2 , there are three types of Hermitian matrix in C_2 .

3.4.1 Definition: i_1 Hermitian matrix

A bicomplex square matrix A is said to be i_1 Hermitian matrix if $A = [\overline{A}]^T$

3.4.2 Theorem: The elements of principal diagonal of an i_1 Hermitian matrix are members of $C(i_2)$.

Proof:

Recall that $A = [\xi_{ij}]_{n \times n}$ is i_1 Hermitian matrix if and only if $\xi_{ij} = \overline{\xi}_{ji} \forall i$ and j. For diagonal element we have

 $\begin{aligned} \xi_{kk} &= \bar{\xi}_{kk} \\ \text{If } \xi_{kk} &= z_{kk} + i_2 w_{kk} \text{ then} \\ z_{kk} + i_2 w_{kk} &= \bar{z}_{kk} + i_2 \overline{w}_{kk} \\ &\implies z_{kk} \in C_0 \text{ and } w_{kk} \in C_0 \\ &\implies \xi_{kk} \in C(i_2) \end{aligned}$

3.4.3 Definition: i_2 Hermitian matrix

A bicomplex square matrix A is said to be i_2 Hermitian matrix if $A = [A^{\sim}]^T$

3.4.4 Theorem: The elements of principal diagonal of an i_2 Hermitian matrix are members of C $(i_1).$

Proof:

 $\mathbf{A} = [\xi_{ij}]_{\mathbf{n}\times\mathbf{n}} \text{ is } \mathbf{i}_{2} \text{Hermitian matrix if and only if } \xi_{ij} = \xi_{ji} \forall \mathbf{i} \text{ and } \mathbf{j}.$

For diagonal element we have

3.4.5 Definition: i_1i_2 Hermitian matrix

A bicomplex square matrix A is said to be i_1i_2 Hermitian matrix if $A = [A^{\#}]^T$

 $3.4.6\ Theorem:$ The elements of principal diagonal of an i_1i_2 Hermitian matrix are members of H.

Proof:

A = $[\xi_{ij}]_{n \times n}$ is $i_1 i_2$ Hermitian matrix if and only if $\xi_{ij} = \xi_{ji}^{*} \forall i$ and j. For diagonal element we have

© 2018 Global Journals

 N_{otes}

$$\begin{split} \xi_{kk} &= \xi_{kk} \overset{\#}{} \\ \text{If } \xi_{kk} &= z_{kk} + i_2 w_{kk} \\ &\implies z_{kk} + i_2 w_{kk} = \overline{z_{kk}} - i_2 \overline{w_{kk}} \\ &\implies z_{kk} \in C_0 \text{ and } w_{kk} \text{ is in the form of } i_1 \text{y where y in } C_0 \\ &\implies \xi_{kk} \in \text{H} \end{split}$$

Notes

e) Skew-Hermitian matrix in C_2

Analogous to the theory of Hermitian matrices, we have defined three types of skew-Hermitian matrices in C_2 .

3.5.1 Definition: i_1 skew-Hermitian matrix

A bicomplex square matrix A is said to be i_1 skew-Hermitian matrix if $A = -[\bar{A}]^T$

3.5.2 Theorem: The elements of principal diagonal of an i_1 skew-Hermitian matrix are of the type of $(i_1 \times s)$, where $s \in C$ (i_2) . *Proof:*

Let $A = [\xi_{ij}]_{n \times n}$ be an i_1 skew-Hermitian matrix then $\xi_{ij} = -\overline{\xi}_{ji}$; for all i and j. For diagonal element we have

$$\xi_{kk} = -\overline{\xi}_{kk}$$

If $\xi_{kk} = z_{kk} + i_2 w_{kk}$ then
 $z_{kk} + i_2 w_{kk} = -(\overline{z}_{kk} + i_2 \overline{w}_{kk})$

Therefore $z_{kk} = -\overline{z}_{kk}$ and $w_{kk} = -\overline{w}_{kk}$

Hence $\xi_{kk} = i_1 \{ \operatorname{Im} (\mathbf{z}_{kk}) \} + i_2 i_1 \{ \operatorname{Im} (\mathbf{w}_{kk}) \} = i_1 \text{.s where } \mathbf{s} \in \mathbb{C}$ (i₂)

3.5.3 Definition: i_2 skew-Hermitian matrix

A bicomplex square matrix A is said to be i_2 skew-Hermitian matrix if $A = -[A^{\sim}]^T$

3.5.4 Theorem: The elements of principal diagonal of an i_2 skew-Hermitian matrix are of the type of $(i_2 \times s)$, where $s \in C$ (i_1) .

Proof:

A = $[\xi_{ij}]_{n \times n}$ is an i_2 skew-Hermitian matrix if and only if $\xi_{ij} = -\xi_{ji}$; for all i and j. For diagonal element we have

$$\xi_{kk} = -\xi_{kk} \sim$$

If $\xi_{kk} = z_{kk} + i_2 w_{kk}$ then
 $z_{kk} + i_2 w_{kk} = -(z_{kk} - i_2 w_{kk})$

Therefore $z_{kk} = -z_{kk}$ i.e. $z_{kk} = 0$

Hence $\xi_{kk} = i_2(w_{kk}) = i_2$ s where $s = w_{kk} \in C$ (i₁)

3.5.5 Definition: $i_1 i_2$ skew-Hermitian matrix

A bicomplex square matrix A is said to be i_1i_2 skew-Hermitian matrix if $A = -[A^{\#}]^T$

3.5.6 Theorem: The elements of principal diagonal of an i_1i_2 skew-Hermitian matrix are of the type of $(i_1 \times s)$, where $s \in H$.

Proof:

A = $[\xi_{ij}]_{n \times n}$ is an $i_1 i_2$ skew-Hermitian matrix if and only if $\xi_{ij} = -\xi_{ji}^{*}$; for all i and j. For diagonal element we have

> $\xi_{kk} = -\xi_{kk} ^{\#}$ If $\xi_{kk} = z_{kk} + i_2 w_{kk}$ then $z_{kk} + i_2 w_{kk} = -(\overline{z}_{kk} - i_2 \overline{w}_{kk})$

Therefore $z_{kk} = -\overline{z}_{kk}$ and $w_{kk} = \overline{w}_{kk}$

Hence
i.e.

$$\xi_{kk} = i_1 \{ \text{Im} (z_{kk}) \} + i_2 \{ \text{Re}(w_{kk}) \}$$

 $\xi_{kk} = i_1 \{ \text{Im}(z_{kk}) \} + i_1 i_1^{-1} i_2 \{ \text{Re}(w_{kk}) \}$
 $= i_1 [\text{Im}(z_{kk}) - i_1 i_2 \text{Re}(w_{kk})]$
 $= i_1.s; \text{ where } s \in H$

3.5.7 Theorem: A is i_1 Hermitian matrix if and only if i_1 A is i_1 skew - Hermitian matrix.

 $A = [\bar{A}]^T$

Proof:

Let A be an i_1 Hermitian matrix therefore

Now
$$[\overline{i_1 A}]^T = [\overline{i_1} \overline{A}]^T$$
 ...[by 3.1.1]
= $-i_1 [\overline{A}]^T$
= $-i_1 A$

i.e. $i_1 A = -[\overline{i_1 A}]^T$

 \Rightarrow i₁ A is i₁ skew - Hermitian matrix.

Converse:

Let $i_1 A$ be an i_1 skew - Hermitian matrix

i.e.

$\mathbf{i}_{1}\mathbf{A} = -[\overline{i_{1}A}]^{T}$
$= -[\overline{\iota_1}\overline{A}]^T$
$= \mathrm{i}_1 [\bar{A}]^T$
$A = [\bar{A}]^T$

i.e.

Hence A is i_1 Hermitian matrix.

Notes

 $A = [A^{\sim}]^T$

3.5.8 Theorem: A is i_2 Hermitian matrix if and only if i_2 A is i_2 skew - Hermitian matrix. Proof:

Let A be an i_2 Hermitian matrix therefore

Now

$$[(i_2 A)^{\sim}]^T = i_2^{\sim} [A^{\sim}]^T \qquad \dots [by \ 3.1.2]$$

=-i_2 A
$$i_2 A = -[(i_2 A)^{\sim}]^T$$

 $N_{\rm otes}$

 $\, \Rightarrow \! i_2 \, A$ is $i_2 \; skew$ - Hermitian matrix.

Converse:

i.e.

Let $i_2 A$ be an i_2 skew - Hermitian matrix

i.e.

$$i_{2} \mathbf{A} = -[(\mathbf{i}_{2} \mathbf{A})^{T}]^{T}$$

$$= -[\mathbf{i}_{2} \mathbf{A}^{T}]^{T}$$

$$= \mathbf{i}_{2} [\mathbf{A}^{T}]^{T}$$
i.e.

$$\mathbf{A} = [\mathbf{A}^{T}]^{T}$$

Hence A is i_2 Hermitian matrix.

3.5.9 Theorem: A is i_1i_2 Hermitian matrix if and only if i_1i_2A is i_1i_2 Hermitian matrix. Proof:

Let A be an $i_1i_2\,\mathrm{Hermitian}$ matrix therefore

$\begin{aligned} A &= [A^{\#}]^{T} \\ \text{Now} & [(i_{1}i_{2}A)^{\#}]^{T} = i_{1}^{\#}i_{2}^{\#}[A^{\#}]^{T} & \dots [\text{by 3.1.3}] \\ &= (-i_{1})(-i_{2})A \\ &= i_{1}i_{2}A \end{aligned}$

 \Rightarrow i₁i₂ A is i₁i₂ Hermitian matrix.

Converse: Let i_1i_2 A be i_1i_2 Hermitian matrix

i.e.

$$\begin{split} i_1 i_2 A &= [i_1 i_2 A]^{\#} \\ &= i_1^{\#} i_2^{\#} [A^{\#}]^T \\ &= (-i_1)(-i_2) [A^{\#}]^T \\ &= i_1 i_2 [A^{\#}]^T \\ A &= [A]^{\#} \end{split}$$

i.e.

Hence A is i_1i_2 Hermitian matrix.

It is evident that if A is i_1i_2 skew-Hermitian matrix then i_1i_2A will be also i_1i_2 skew-Hermitian matrix and vice versa.

References Références Referencias

- 1. D. Rochon, M. Shapiro,"On Algebraic Properties of Bicomplex and Hyperbolic Numbers", Anal. Univ. Oradea, fasc.Math., 11, 2004, 71 110.
- Futagawa, M.: On the theory of functions of a quaternary Variable, Tohoku Math. J., 29 (1928), 175-222.

Notes

- Futagawa, M.: On the theory of functions of a quaternary Variable, II, Tohoku Math. J., 35 (1932), 69-120.
- 4. Lipschutz, S. and Lipson, M. 'Schaum's "Outline of Theory and Problem of linear Algebra" Tata McGraw Hill Education, 2005.
- 5. Price, G.B.: An introduction to multicomplex spaces and Functions, Marcel Dekker Inc., New York, 1991.
- 6. Riley, J.D.: Contributions to the theory of function of a bicomplex variable, Tohoku Math. J., 2nd series 5 (1953), 132-165.
- 7. Ringleb, F.: Beitrage Zur Funktionen theorie in Hyperkomplexon Systemen, I, Rend. Circ. Mat. Palermo, 57 (1933), 311-340.
- 8. Segre, C.: Le Rappresentazioni Reali Delle Forme Complesse e Gli enti Iperalgebrici, Math.Ann. 40 (1892), 413-467.
- Srivastava, Rajiv K.: Bicomplex Numbers: Analysis and applications, Math.Student, 72 (1-4) 2003, 69-87.
- 10. Srivastava, Rajiv K "Certain topological aspects of Bicomplex space", Bull. Pure & Appl. Math. Dec., 2008

© 2018 Global Journals