Linear Elliptic Systems with Nonlinear Boundary Conditions without Landesman-Lazer Conditions

By Alzaki Fadlallah

University of Alabama at Birmingham, United States

Abstract- The boundary value problem is examined for the system of elliptic equations of from

\[-\Delta u + A(x)u = \Omega \]

where \(A(x)\) is positive semidefinite matrix on \(\mathbb{R}^{k \times k}\), and \(\frac{\partial u}{\partial \nu} + g(u) = h(x)\) on \(\partial \Omega\). It is assumed that \(g \in C(\mathbb{R}^k, \mathbb{R}^k)\) is a bounded function which may vanish at infinity. The proofs are based on Leray-Schauder degree methods.

GJSFR-F Classification : FOR Code : MSC 2010: 58J05

© 2015. Alzaki Fadlallah. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linear Elliptic Systems with Nonlinear Boundary Conditions without Landesman-Lazer Conditions

Alzaki Fadlallah

Abstract: The boundary value problem is examined for the system of elliptic equations of the form\[-\Delta u + A(x)u = 0 \text{ in } \Omega,\]
where $A(x)$ is positive semidefinite matrix on $\mathbb{R}^k \times \mathbb{R}^k$ and $\frac{\partial u}{\partial \nu} + g(u) = h(x)$ on $\partial \Omega$. It is assumed that $g \in C(\mathbb{R}^k, \mathbb{R}^k)$ is a bounded function which may vanish at infinity. The proofs are based on Leray-Schauder degree methods.

I. Introduction

Let \mathbb{R}^k be real k-dimensional space, if $w \in \mathbb{R}^k$, then $|w|_E$ denotes the Euclidean norm of w. Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$ is a bounded domain with boundary $\partial \Omega$ of class C^∞. Let $g \in C^1(\mathbb{R}^k, \mathbb{R}^k)$, $h \in C(\partial \Omega, \mathbb{R}^k)$, and the matrix

$$A(x) = \begin{bmatrix} a_{11}(x) & a_{12}(x) & \cdots & a_{1k}(x) \\ a_{21}(x) & a_{22}(x) & \cdots & a_{2k}(x) \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1}(x) & a_{k2}(x) & \cdots & a_{kk}(x) \end{bmatrix}.$$

Verifies the following conditions:

(A1) The functions $a_{ij} : \Omega \to \mathbb{R}$, $i, j \in \{1, \cdots, k\}$.

(A2) $A(x)$ is positive semidefinite matrix on $\mathbb{R}^k \times \mathbb{R}^k$, almost everywhere $x \in \Omega$, and $A(x)$ is positive definite on a set of positive measure with $a_{ij} \in L^p(\Omega)$ $\forall i, j \in \{1, \cdots, k\}$ for $p > \frac{N}{2}$ when $N \geq 3$, and $p > 1$ when $N = 2$.

We will study the solvability of

$$-\Delta u + A(x)u = 0 \quad \text{in } \Omega,$$
$$\frac{\partial u}{\partial \nu} + g(u) = h(x) \quad \text{on } \partial \Omega. \tag{1.1}$$

The interest in this problem is the resonance case at the boundary with a bounded nonlinearity, we will assume that g a bounded function, and there is a constant $R > 0$ such that

$$|g(w(x))|_E \leq R \quad \forall w \in \mathbb{R}^k \& x \in \partial \Omega. \tag{1.2}$$

Our assumptions allow that g is not only bounded, but also may be vanish at infinity i.e.;

$$\lim_{|w|_E \to \infty} g(w) = 0 \in \mathbb{R}^k. \tag{1.3}$$

Condition (1.3) is not required by our assumptions, but allowing for it is the main result of this paper.

Author: Department of Mathematics, University of Alabama at Birmingham, Alabama, USA. e-mail: zakima99@uab.edu
In case of the scalar equation \(i.e. \): \(k = 1 \) and \(g \) doesn’t satisfy condition (1.3) but satisfying the Landesman-Lazer condition
\[
g_- < h < g^+ \]
where \(\lim_{w \to -\infty} g(w) = g_- \), \(h = \frac{1}{|\Omega|} \int_{\partial \Omega} h \, dx \), \(\lim_{w \to \infty} g(w) = g^+ \),
and \(A(x) = 0 \in \mathbb{R}^{k \times k} \). Then it is well known that there is a solution for (1.1).

The first results when the nonlinearity in the equation in scalar case was done by Nirenberg [2], [3] in case of system and the nonlinearity in the equation was done by Ortega and Sánchez [6], more completely the case for periodic solutions of the system of ordinary differential equations with bounded nonlinear \(g \) satisfying Nirenberg’s condition. They studied periodic so solutions
\[
u'' + cu' + g(u) = p(t),
\]
for \(u \in \mathbb{R}^k \).

In case \(c = 0 \) was done by Mawhin [7]. In case the nonlinear terms vanish at infinity, as in (1.3), the Landesman-Lazer conditions fail. We would like to know what we can do in this case, and what conditions on a bounded nonlinearity that vanishes at infinity might replace that ones of the Landesman-Lazer type. Several authors have considered the case when the nonlinearity \(g: \partial \Omega \times \mathbb{R} \to \mathbb{R} \) is a scalar function satisfies Carathéodory conditions i.e.;

\[i: \; g(., \, u) \text{ is measurable on } \partial \Omega, \text{ for each } u \in \mathbb{R},\]
\[ii: \; g(x, .) \text{ is continuous on } \mathbb{R}, \text{ for a.e.} \, x \in \partial \Omega,\]
\[iii: \; \text{for any constant } r > 0, \text{ there exists a function } \gamma_r \in L^2(\partial \Omega), \text{ such that } \]
\[|g(x, u)| \leq \gamma_r(x), \tag{1.4}\]

for a.e. \(x \in \Omega \), and all \(u \in \mathbb{R} \) with \(|u| \leq r \),

was done by Fadlallah [8] and the others have considered the case when the nonlinearity does not decay to zero very rapidly. For example in case the nonlinearity in the equation if \(g = g(t) \) is a scalar function, the condition
\[
\lim_{|t| \to \infty} t g(t) > 0. \tag{1.5}\]

and related ones were assumed in [9], [10], [11], [12], [13], [14], [15], [16], [17]. These papers all considered scalar problem, but also considered the Dirichlet (Neumann) problem at resonance (non-resonance) at higher eigenvalues (Steklov-eigenproblems). The work in some of these papers makes use of Leray-Schauder degree arguments, and the others using critical point theory both the growth restrictions like (1.5) and Lipschitz conditions have been removed (see [15], [17]). In this paper we study systems of elliptic boundary value problems with nonlinear boundary conditions Neumann type and the nonlinearities at boundary vanishing at the infinity. We do not require the problem to be in variational from.

Let \(S^{k-1} \) be the unit sphere in \(\mathbb{R}^k \). We will assume that \(S^{k-1} \cap \partial \Omega \neq \emptyset \) and Let \(S = S^{k-1} \cap \partial \Omega \).

1.1. Assumptions

\(G1: \) \(g \in C^1(\mathbb{R}^k, \mathbb{R}^k) \) and \(g \) is bounded with \(g(w) \neq 0 \) for \(|w|_E \) large.

\(G2: \) For each \(z \in S \) the \(\lim_{r \to \infty} \frac{g(rz)}{|g(rz)|_E} = \varphi(z) \) exists, and the limits is uniform for \(z \in S \). It follows that \(\varphi \in C(S, S) \) and the topological degree of \(\varphi \) is defined.

\(G3: \) \(\deg(\varphi) \neq 0 \)
1.2. Notations

- Let $\langle ., . \rangle_{L^2}$ denote the inner product in $L^2 := L^2(\Omega, \mathbb{R}^k)$ where L^2 is Lebesgue space
- Let $\langle ., . \rangle_E$ denote the standard inner product in \mathbb{R}^k
- Assume that $(A1)$-A2 holds, then define

$$E(u,v) := \sum_{i=1}^{k} \langle \nabla u_i, \nabla v_i \rangle_{L^2} + \langle a_{ij}(x)u_i, v_j \rangle_{L^2}, \quad j = 1, \ldots, k,$$

for $u,v \in H^1 = H^1(\Omega, \mathbb{R}^k)$ where H^1 is the Sobolev space.

We note that it follows from the assumptions $G1 : - \text{G3}$: that on large balls

$$B(R) := \{ y : \|y\|_E \leq R \},$$

the $\deg(g, B(R), 0) \neq 0$ see [18],[19].

We modify the Lemma 1 and Theorem 1 in [4] to fit our problem.

Lemma 1.1. Assume that $G1$: and $G2$: hold and $C > 0$ is a given constant. Then there exists $R > 0$ such that

$$\int_{\partial \Omega} g(u(x)) \, dx \neq 0,$$

for each function $u \in C(\partial \Omega, \mathbb{R}^k)$ (we can write $u = \bar{u} + \tilde{u}$ where $\bar{u} = \int_{\partial \Omega} u(x) \, dx = 0,$ and $\bar{u} \perp \tilde{u}$) with $\|\bar{u}\|_E \geq R$ and $\|u - \bar{u}\|_{L^\infty(\partial \Omega)} \leq C$

Proof. By way of contradiction. Assume that for some $C > 0$ there exists a sequence of functions $\{u_n\}_{n=1}^\infty \in C(\Omega, \mathbb{R}^k)$, with

$$\|\bar{u}_n\|_E \to \infty, \quad \|u_n - \bar{u}_n\|_{L^\infty(\partial \Omega)} \leq C$$

and

$$\int_{\partial \Omega} g(u_n(x)) \, dx = 0. \quad (1.6)$$

We constructed a subsequence of u_n one can assume that $\bar{z}_n = \frac{u_n}{\|u_n\|_E}$ converges to some point $z \in S$. The uniform bound on $u_n - \bar{u}_n$ implies that also $\frac{u_n}{\|u_n\|_E}$ converges to z and this convergence is uniform with respect to $x \in \bar{\Omega}$. It follows from the assumption $G2$: that

$$\lim_{n \to \infty} \frac{g(u_n(x))}{\|g(u_n(x))\|_E} = \varphi(z)$$

uniformly in $\bar{\Omega}$. Since $\varphi(z)$ is in the unit sphere one can find an integer n_0 such that if $n \geq n_0$ and $x \in \bar{\Omega}$, then

$$\langle \frac{g(u_n(x))}{\|g(u_n(x))\|_E}, \varphi(z) \rangle_E \geq \frac{1}{4}$$

Define

$$\gamma_n(x) = \|g(u_n(x))\|_E.$$

By $G1$: clearly $\gamma_n > 0$ everywhere. For $n \geq n_0$

$$\int_{\partial \Omega} \frac{g(u_n(x))}{\gamma_n(x)} \, dx, \varphi(z) \rangle_E = \int_{\partial \Omega} \langle g(u_n(x)), \varphi(z) \rangle_E \, dx$$

$$= \int_{\partial \Omega} \gamma_n(x) \frac{g(u_n(x))}{\gamma_n(x)} \varphi(z) \rangle_E \, dx \geq \frac{1}{4} \int_{\partial \Omega} \gamma_n(x) \, dx > 0$$

Therefore, $\int_{\partial \Omega} g(u_n(x)) \, dx > 0$. Now we have contradiction with (1.6)

The proof completely of the lemma.
II. Main Result

Let

$$Qu = Nu.$$ \hspace{1cm} (2.1)

Be linear elliptic equation with nonlinear boundary condition. Suppose N is continuous and bounded (i.e.; $|Nu|_E \leq C$ for all u). If Q has a compact inverse Q^{-1} then by Leray-Schauder theory (2.1) has a solution. On the other hand if Q is not invertible the existence of a solution depends on the behavior of N and its interaction with the null space of Q see [19].

Theorem 2.1. Suppose $g \in C^1(\mathbb{R}^k, \mathbb{R}^k)$ satisfies $G1$, $G2$, and $G3$. If $h \in C(\partial \Omega, \mathbb{R}^k)$, satisfies $\tilde{h} = 0$. Then, (1.1) has at least one solution.

Proof. Define

$$J : H^1(\Omega) \to R$$

be continuous map in $H^1(\Omega)$ with the $L^2(\Omega)$ norm

$$J(v) = E(u, v)$$

Define

$$Dom(L) := \{u \in H^1(\Omega) : -\Delta u + A(x)u = 0\}$$

Define an operator L on $L^2 = L^2(\Omega, \mathbb{R}^k)$ for $u \in Dom(L)$ and each $v \in H^1(\Omega)$ by

$$E(u, v) = <Lu, v >_{L^2(\Omega)},$$

we use the embedding theorem see [20] since you know that $H^1(\Omega) \to L^2(\Omega)$ and the trace theorem ($H^1 \to L^2(\partial \Omega)$). Thus, $L : Dom(L) \subset L^2(\partial \Omega) \to L^2(\partial \Omega)$ then the equation

$$E(u, v) = <h, v >_{L^2(\partial \Omega)} \forall v \in H^1(\partial \Omega),$$

if and only if

$$Lu = h.$$

The latter equation is solvable if and only if

$$Ph := \frac{1}{|\partial \Omega|} \int_{\partial \Omega} h = 0.$$

Now if $h \in L^\infty(\partial \Omega, \mathbb{R}^k)$ and $Ph = 0$. Then, each solution $u \in H^1(\Omega)$ is Hölder continuous, so $u \in C^\gamma(\Omega, \mathbb{R}^k)$ for some $\gamma \in (0,1)$. Since we know that there is constant $r_1 > 0$ such that

$$||u||_\gamma \leq r_1 \left(||u||_{L^2(\partial \Omega)} + ||h||_{L^\infty(\partial \Omega)}\right).$$

When $Ph = 0$ there is a unique solution $Kh = \tilde{u} \in H^1(\Omega)$ with $P\tilde{u} = 0$ to

$$Lu = h,$$

and if $h \in C(\partial \Omega) = C(\partial \Omega, \mathbb{R}^k)$ then

$$||Kh||_\gamma \leq r_1 \left(||Kh||_{L^2(\partial \Omega)} + ||h||_{L^\infty(\partial \Omega)}\right) \leq r_2 ||h||_{C(\partial \Omega)}$$

and K maps $C(\partial \Omega)$ into itself take compact set to compact set i.e.; compactly.

Let Q be the restriction of L to $L^{-1}(C(\partial \Omega)) = KC(\partial \Omega) + \mathbb{R}^k$. We define $N : C(\partial \Omega) \to C(\partial \Omega)$ by

$$N(w)(x) := h(x) - g(w(x)) \forall w \in C(\partial \Omega)$$

is continuous. Now (1.1) can be written as

$$Qu = Nu$$
Ref

Example 2.1. Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$ is a bounded domain with boundary $\partial \Omega$ of class C^∞. Let

$$-\Delta u + A(x)u = 0 \quad \text{in } \Omega,$$

$$\frac{\partial u}{\partial \nu} + \frac{u}{1 + |u|_E^2} = h(x) \quad \text{on } \partial \Omega$$

(2.3)

where $A(x)$ is positive semidefinite matrix on $\mathbb{R}^{2 \times 2}$, and where $u = (u_1, u_2) \in \mathbb{R}^2$ and h real valued function and continuous on $\partial \Omega$, and $\int_{\partial \Omega} h(x) \, dx = 0$ and $g(u) = \frac{u}{1 + |u|_E^2}$

$$\lim_{|u|_E \to \infty} g(u) = \lim_{|u|_E \to \infty} \frac{u}{1 + |u|_E^2} = 0$$

$g(u)$ vanishes at infinity, clearly $g \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ and bounded with $g(u) \neq 0$, for $|u|_E$ large. Therefore g satisfies $G1$.

$$\frac{g(\rho u_1, \rho u_2)}{g(\rho u_1, \rho u_2)} = \frac{g(u_1)}{g(u_2)} = \frac{\frac{\rho u_1}{1 + |\rho u_1|_E^2}}{u_1} = \frac{\rho u}{|u|_E} = u$$

and $Q = Im P, Im Q = ker P$. The linear map Q is a Fredholm map (see [16]) and N is Q–compact (see [19]). Now we define the Homotopy equation as follows.

Let $\lambda \in [0, 1]$ such that

$$Qu = \lambda Nu.$$

The a priori estimates (i.e.; the possible solutions of (2.2) are uniformly bounded in $C(\partial \Omega)$). Now we show that the possible solutions of (2.2) are uniformly bounded in $C(\partial \Omega)$ independent of $\lambda \in [0, 1]$ Since we know that $u = \bar{u} + \tilde{u}$ where $\bar{u} = Pu$. Then

$$||\bar{u}||_{\gamma} = ||\lambda KNu||_{\gamma} \leq r_2 ||Nu||_{C(\partial \Omega)} \leq R_1,$$

where R_1 is a constant (g is abounded function). It remains to show that $\tilde{u} \in \mathbb{R}^k$ is bounded, independent of $\lambda \in [0, 1]$. By the way of contradiction assume is not the case (i.e.; \tilde{u} unbounded). Then there are sequence $\{\lambda_n\} \subset [0, 1]$, and $\{u_n\} \subset Dom(Q)$ with $||\tilde{u}_n||_{\gamma} \leq R_1$,

$$Qu_n = \lambda_n Nu_n$$

we get that

$$PNu_n = PN(\tilde{u}_n + \bar{u}_n) = -\int_{\partial \Omega} g(\tilde{u}_n(x) + \bar{u}_n(x)) \, dx = 0.$$

Now $u_n = \tilde{u}_n + \bar{u}_n$ so $||u_n - \tilde{u}_n||_{L^\infty(\partial \Omega)} = ||\tilde{u}_n||_{L^\infty(\partial \Omega)} \leq R_1$ and $||\tilde{u}_n||_{L^\infty(\partial \Omega)} \to \infty$.

It follows from Lemma 1.1 that for all sufficiently large n

$$\int_{\partial \Omega} g(u_n(x)) \, dx \neq 0.$$

We have reached a contradiction, and hence all possible solutions of (2.2) are uniformly bounded in $C(\partial \Omega)$ independent of $\lambda \in [0, 1]$.

Let $B(0, r) = \{x : |x|_E \leq r\}$ denote the ball in $C(\partial \Omega, \mathbb{R}^k)$. Now you can apply Leray-Schauder degree theorem see ([18],[19]), the only thing left to show is that

$$deg(PN, B(0, r) \cap ker Q, 0) \neq 0,$$

for large $r > 0$. So $deg(PN, B(0, r) \cap ker Q, 0) = deg(g, \bar{B}_r, 0)$, where \bar{B}_r is the ball in \mathbb{R}^k of radius r. Since for $|x|_E$ large, and $deg(\varphi) \neq 0$ we have that $deg(g, \bar{B}_r, 0) \neq 0$ for large r. Therefore $deg(PN, B(0, r) \cap ker Q, 0) \neq 0$ By Leray-Schauder degree theorem equation (2.2) has a solution when $\lambda = 1$. Therefore, equation (1.1) has at least one solution. This proves the theorem.

We will give one example.

Example 2.1. Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$ is a bounded domain with boundary $\partial \Omega$ of class C^∞. Let

$$-\Delta u + A(x)u = 0 \quad \text{in } \Omega,$$

$$\frac{\partial u}{\partial \nu} + \frac{u}{1 + |u|_E^2} = h(x) \quad \text{on } \partial \Omega$$

(2.3)

where $A(x)$ is positive semidefinite matrix on $\mathbb{R}^{2 \times 2}$, and where $u = (u_1, u_2) \in \mathbb{R}^2$ and h real valued function and continuous on $\partial \Omega$, and $\int_{\partial \Omega} h(x) \, dx = 0$ and $g(u) = \frac{u}{1 + |u|_E^2}$

$$\lim_{|u|_E \to \infty} g(u) = \lim_{|u|_E \to \infty} \frac{u}{1 + |u|_E^2} = 0$$

$g(u)$ vanishes at infinity, clearly $g \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ and bounded with $g(u) \neq 0$, for $|u|_E$ large. Therefore g satisfies $G1$.

$$\frac{g(\rho u_1, \rho u_2)}{g(\rho u_1, \rho u_2)} = \frac{g(u_1)}{g(u_2)} = \frac{\frac{\rho u_1}{1 + |\rho u_1|_E^2}}{u_1} = \frac{\rho u}{|u|_E} = u$$
For all u in S and $r > 0$. Therefore G_2 holds.
And $\varphi(u) = u$ so that $\deg(\varphi) \neq 0$. Therefore G_3 holds. By Theorem 2.1. Then,
equation (2.3) has at least one solution.

References Références Referencias

1. E. Landesman and A. Lazer: Nonlinear perturbations of linear elliptic boundary
2. L. Nirenberg, An application of generalized degree to a class of nonlinear problems.
Troisijeme Colloque sur l'Analyse Fonctionnelle (Lijge, 1970), pp. 57–74. Vander,
Louvain, 1971.
3. L. Nirenberg, Generalized degree and nonlinear problems. Contributions to nonlinear
4. R. Ortega, and J.R. Ward, A Semilinear elliptic system with vanishing
nonlinearities, proceedings of the fourth international conference on dynamical
systems and differential equations May 24 – 27, 2002, Wilmington, NC.
5. R. Iannacci, M. N. Nkashama; nonlinear two point boundary value problems at
resonance without Landesman-lazer condition. Journal of Proceeding of the american
6. R. Ortega and L.A. Sanchez, Periodic solutions of forced oscillators with several
7. J. Mawhin, Forced second order conservative systems with periodic nonlinearity,
8. A. Fadollah Linear second order elliptic partial differential equations with Nonlinear
Boundary Conditions at Resonance Without Landesman-Lazer Conditions,
9. A. Ambrosetti and G. Mancini, Existence and multiplicity results for nonlinear
elliptic problems with linear part at resonance the case of the simple eigenvalue,J.
10. A. Ambrosetti and G. Mancini, Theorems of existence and multiplicity for nonlinear
11. A. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic
12. S. Fucik and M. Krbc, Boundary value problems with bounded nonlinearity and
13. P. Hess, A remark on the preceding paper of Fucik and Krbc , Mat. Z. 155 (1977),
139–141.
14. N. Mavinga and M. N. Nkashama, Steklov–Neumann eigenproblems and nonlinear
elliptic equations with nonlinear boundary conditions. J. Diff. Eqns 248 (2010),
1212–1229.
15. N. Mavinga and M. N. Nkashama, Nonresonance on the boundary and strong
solutions of elliptic equations with nonlinear boundary conditions. Journal of Applied
16. N. Mavinga, M. N. Nkashama, Nonresonance on the boundary and strong solutions
of elliptic equations with nonlinear boundary conditions. Journal of Applied
17. T. Runst, A unified approach to solvability conditions for nonlinear second-order
19. J. Mawhin; Topological degree methods in nonlinear boundary-value problems, in
NSFCBMS Regional Conference Series in Mathematics, American Mathematical
This page is intentionally left blank