A Class of Multivalent Harmonic Functions Involving Salagean Operator

By Noohi Khan
Amity University Lucknow, India

Introduction- A continuous complex valued function $f=u+iv$ defined in a simply connected complex domain D is said to be harmonic in D if both u and v are real harmonic in D. Let F and G be analytic in D so that $F(0)=G(0)=0$, $ReF = ReG = u$, $ImG = v$ by writing $(F+iG)/2 = h$, $(F-iG)/2 = g$, the function f admits the representation $f = h + g$, where h and g are analytic in D. h is called the analytic part of f and g, the co-analytic part of f.

GJSFR-F Classification : FOR Code : MSC 2010: 30F15

Strictly as per the compliance and regulations of:
A Class of Multivalent Harmonic Functions Involving Salagean Operator

Noohi Khan

1. Introduction

A continuous complex valued function \(f = u + iv \) defined in a simply connected complex domain \(D \) is said to be harmonic in \(D \) if both \(u \) and \(v \) are real harmonic in \(D \). Let \(F \) and \(G \) be analytic in \(D \) so that \(F(0) = G(0) = 0 \), \(\text{Re}F = \text{Ref} = u \), \(\text{Re}G = \text{Im}f = v \) by writing \((F+IG)/2 = h \), \((F-IG)/2 = g \). The function \(f \) admits the representation \(f = h + g \) where \(h \) and \(g \) are analytic in \(D \). \(h \) is called the analytic part of \(f \) and \(g \), the co-analytic part of \(f \).

Ahuja and Jahangiri \cite{1}, \cite{2} introduce and studied certain subclasses of the family \(SH(m) \), \(m \geq 1 \) of all multivalent harmonic and orientation preserving functions in \(\Delta = \{ z : |z| < 1 \} \). A function \(f \) in \(SH(m) \) can be expressed as \(f = h + g \), where \(h \) and \(g \) are analytic functions of the form

\[
\begin{align*}
 h(z) &= z^m + \sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1}, \\
 g(z) &= \sum_{n=1}^{\infty} b_{n+m-1} z^{n+m-1}, \quad |b_m| < 1.
\end{align*}
\]

For analytic function \(h(z) \in S(m) \), Salagean \cite{3} introduced an operator \(D_m^\nu \) defined as follows:

\[
D_m^0 h(z) = h(z), \quad D_m^1 h(z) = D_m(h(z)) = \frac{z}{m} h'(z) \quad \text{and} \quad D_m^\nu h(z) = \frac{z(D_m^{\nu-1} h(z))'}{m},
\]

\[
= z + \sum_{n=2}^{\infty} \left(\frac{n + m - 1}{m} \right)^\nu a_{n+m-1} z^{n+m-1}, \quad \nu \in \mathbb{N}.
\]

Whereas, Jahangiri et al. \cite{4} defined the Salagean operator \(D_m^\nu f(z) \) for multivalent harmonic function as follows:

\[
D_m^\nu f(z) = D_m^\nu h(z) + (-1)^\nu D_m^\nu g(z)
\]

where,

\[
D_m^\nu h(z) = z^m + \sum_{n=2}^{\infty} \left(\frac{n + m - 1}{m} \right)^\nu a_{n+m-1} z^{n+m-1}
\]

Author: Department of Mathematics and Astronomy, University of Lucknow, Lucknow.
In this paper we define a subclass $H_m(\lambda, \nu, \alpha)$ of m-valent harmonic functions involving Salagean operator $D_m^\nu f(z)$ as follows:

Definition 1

Let $f(z) = h(z) + \overline{g(z)}$ be the harmonic multivalent function of the form (1), then $f \in H_m(\lambda, \nu, \alpha)$ if and only if

$$\Re\left\{ (1 - \lambda) \frac{D_m^\nu f(z)}{z^m} + \lambda \frac{\partial}{\partial \theta} D_m^\nu f(z) \right\} > \alpha$$

where $0 \leq \alpha < 1$, $\lambda \geq 0$, $z = re^{i\theta} \in \Delta$ and $D_m^\nu f(z)$ is defined by (3) and

$$\frac{\partial}{\partial \theta} D_m^\nu f(z) = i \left[z(D_m^\nu h(z))' - (-1)^\nu z(D_m^\nu g(z))' \right], \quad \frac{\partial}{\partial \theta} z^m = imz^m.$$

We denote the subclass $TH_m(\lambda, \nu, \alpha)$ consist of harmonic functions $f_\nu = h + g_\nu$ in $H_m(\lambda, \nu, \alpha)$ so that h and g_ν are of the form

$$h(z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1}| z^{n+m-1},$$

$$g_\nu(z) = (-1)^\nu \sum_{n=1}^{\infty} |b_{n+m-1}| z^{n+m-1}, \quad |b_m| < 1.$$

Also note that $TH_m(\lambda, \nu, \alpha) \equiv TH_m(\lambda, \nu).$

The class $H_m(\lambda, \nu, \alpha)$ provides a transition between two classes:

$$\Re\left\{ \frac{D_m^\nu f(z)}{z^m} \right\} > \alpha \quad \text{and} \quad \Re\left\{ \frac{\partial}{\partial \theta} D_m^\nu f(z) \right\} > \alpha$$

as λ moves between 0 and 1.

Denote $H_m(0, \nu, \alpha)$ by $P_m(\nu, \alpha)$ and $H_m(1, \nu, \alpha)$ by $Q_m(\nu, \alpha)$.

In this paper first we obtained the sufficient coefficient condition for $f(z) \in H_m(\lambda, \nu, \alpha)$ and then it is shown that this coefficient condition is also necessary for $f(z) \in TH_m(\lambda, \nu, \alpha)$. Also distortion bounds, extreme points, convex combination, integral operator, convolution condition, radius of convexity, radius of starlikeness for the functions $f(z) \in TH_m(\lambda, \nu, \alpha)$ are obtained.

II. **Main Results**

a) **Theorem 1 (Sufficient coefficient condition for $H_m(\lambda, \nu, \alpha)$)**

Assume that $f = h + \overline{g}$, h and g be given by (1) and $\lambda \geq 0$, if

$$\sum_{n=2}^{\infty} \left(\frac{n+m-1}{m} \right)^\nu \left[\frac{n+m-1}{m} \right] \lambda + (1 - \lambda) |a_{n+m-1}| +$$

$$\sum_{n=1}^{\infty} \left(\frac{n+m-1}{m} \right)^\nu \left[\frac{n+m-1}{m} \right] \lambda - (1 - \lambda) |b_{n+m-1}| \leq 1 - \alpha, 0 \leq \alpha < 1$$

then, $f(z) \in H_m(\lambda, \nu, \alpha)$.

© 2015 Global Journals Inc. (US)
b) **Remark 2**

The coefficient bound (6) in above theorem is sharp for the function

\[
f(z) = z^m + \sum_{n=2}^{\infty} \frac{x_n}{(\frac{n+m-1}{m})^\nu \left(\frac{n+m-1}{m}\right)^\lambda + (1-\lambda)} z^{n+m-1}
\]

\[
+ \sum_{n=1}^{\infty} \frac{y_n}{(\frac{n+m-1}{m})^\nu \left(\frac{n+m-1}{m}\right)^\lambda - (1-\lambda)} z^{n+m-1}
\]

where

\[
\frac{1}{1-\alpha} \left(\sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| \right) = 1.
\]

c) **Remark 3**

For \(\lambda \geq 1 \),

\[
1 \leq \left(\frac{n+m-1}{m}\right) \leq \left(\frac{n+m-1}{m}\right) + (1-\lambda) \leq \left(\frac{n+m-1}{m}\right) - (1-\lambda).
\]

d) **Corollary 4**

Let \(f = h + \overline{g} \) be such that \(h \) and \(g \) are given by (1) and let

\[
\sum_{n=2}^{\infty} \left(\frac{n+m-1}{m}\right)^\nu \left(\frac{n+m-1}{m}\right)^\lambda + \frac{a_{n+m-1}}{1-\alpha} + \sum_{n=1}^{\infty} \left(\frac{n+m-1}{m}\right)^\nu \left(\frac{n+m-1}{m}\right)^\lambda - (1-\lambda) \frac{b_{n+m-1}}{1-\alpha}
\]

for \(\lambda \geq 1 \) and \(0 \leq \alpha < 1 \), then \(f \in H(\lambda, \nu, \alpha) \).

Putting \(\lambda = 0 \) in Theorem 1 the following Corollary is obtained.

e) **Corollary 5**

Let \(f = h + \overline{g} \) be such that \(h \) and \(g \) are given by (1) and let

\[
\sum_{n=2}^{\infty} \left(\frac{n+m-1}{m}\right)^\nu \left(\frac{n+m-1}{m}\right)^\lambda + \frac{a_{n+m-1}}{1-\alpha} + \sum_{n=1}^{\infty} \left(\frac{n+m-1}{m}\right)^\nu \left(\frac{n+m-1}{m}\right)^\lambda - (1-\lambda) \frac{b_{n+m-1}}{1-\alpha}
\]

for \(0 \leq \alpha < 1 \), then \(f \in P_m(\nu, \alpha) \).

Putting \(\lambda = 1 \) in Theorem 1 the following Corollary is obtained.

f) **Corollary 6**

Let \(f = h + \overline{g} \) be such that \(h \) and \(g \) are given by (1) and let

\[
\sum_{n=2}^{\infty} \left(\frac{n+m-1}{m}\right)^\nu \left(\frac{n+m-1}{m}\right)^\lambda + \frac{a_{n+m-1}}{1-\alpha} + \sum_{n=1}^{\infty} \left(\frac{n+m-1}{m}\right)^\nu \left(\frac{n+m-1}{m}\right)^\lambda - (1-\lambda) \frac{b_{n+m-1}}{1-\alpha}
\]

for \(0 \leq \alpha < 1 \), then \(f \in Q_m(\nu, \alpha) \).

g) **Remark 7**

\(H_m(\lambda, \nu, \alpha_2) \subseteq H_m(\lambda, \nu, \alpha_1) \) for \(\alpha_1 \leq \alpha_2 \). Also, \(Q_m(\nu, \alpha) \subseteq P_m(\nu, \alpha) \).
h) **Theorem 8 (Coefficient inequality for** $\text{TH}_m(\lambda, v, \alpha)$)

Let $f_v = h + g_v$ be so that h and g_v are given by (5). Then,

$$
\begin{align*}
\sum_{n=2}^{\infty} \left(\frac{n+m-1}{m} \right)^{\nu} \left[\left(\frac{n+m-1}{m} \right) \lambda + (1-\lambda) \right] |a_{n+m-1}| \\
\sum_{n=1}^{\infty} \left(\frac{n+m-1}{m} \right)^{\nu} \left[\left(\frac{n+m-1}{m} \right) \lambda - (1-\lambda) \right] |b_{n+m-1}| \leq 1 - \alpha
\end{align*}
$$

(10)

where $0 \leq \alpha < 1, \lambda \geq 1$ and $|a_m| = 1$.

i) **Theorem 9 (Distortion Bounds)**

If $f_v \in \text{TH}_m(\lambda, v, \alpha)$ and $\lambda \geq 1, |z| = r < 1$, then

$$
|f_v(z)| \leq (1 + |b_m|)r^m + \frac{r^{m+1}}{(m+1)^\nu} \left[\frac{m(1-\alpha)}{(m+\lambda)} - \frac{m(2\lambda-1)}{(m+\lambda)} |b_m| \right]
$$

(11)

and

$$
|f_v(z)| \geq (1 - |b_m|)r^m - \frac{r^{m+1}}{(m+1)^\nu} \left[\frac{m(1-\alpha)}{(m+\lambda)} - \frac{m(2\lambda-1)}{(m+\lambda)} |b_m| \right].
$$

(12)

j) **Corollary 10**

Let $f_v \in \text{TH}_m(\lambda, v, \alpha)$ then for $|z| = r < 1$ and $\lambda \geq 1$

$$
[w : |w| < \left\{ \left(\frac{m+1}{m} \right)^{\nu} (m+\lambda) - m^{\nu+1} (1-\alpha) \right\} + \left\{ \frac{(2\lambda-1) - (m+1)^{\nu+1} (m+\lambda)}{(m+1)^{\nu+1} (m+\lambda)} \right\} |b_m| \} \subset f_v(\Delta).
$$

(13)

k) **Theorem 11 (Extreme Points)**

Let f_v be given by (5) then $f_v \in \text{TH}_m(\lambda, v, \alpha)$; $\lambda \geq 1$ if and only if.

$$
f_v(z) = \sum_{n=1}^{\infty} \left[x_{n+m-1} h_{n+m-1}(z) + y_{n+m-1} g_{n+m-1,v}(z) \right],
$$

(14)

where

$$
h_m(z) = z^m, \quad h_{n+m-1}(z) = z^m - \frac{1}{\left(\frac{n+m-1}{m} \right)^{\nu} \left[\left(\frac{n+m-1}{m} \right) \lambda + (1-\lambda) \right]} z^{n+m-1}, (n = 2, 3, ...)
$$

and

$$
g_{n+m-1,v}(z) = z^m + (-1)^\nu \frac{1}{\left(\frac{n+m-1}{m} \right)^{\nu} \left[\left(\frac{n+m-1}{m} \right) \lambda - (1-\lambda) \right]} z^{n+m-1}, (n = 1, 2, 3, ...).
$$

$$
x_{n+m-1} \geq 0, \quad y_{n+m-1} \geq 0, \quad x_m = 1 - \sum_{n=2}^{\infty} x_{n+m-1} = \sum_{n=1}^{\infty} y_{n+m-1}.
$$

In particular, the extreme points of $\text{TH}_m(\lambda, v, \alpha)$ are $\{h_{n+m-1}\}$ and $\{g_{n+m-1,v}\}$.

© 2015 GlobalJournals Inc. (US)
1) **Theorem 12 (Convex Combination)**

If \(f_{i,v} (i = 1, 2, \ldots) \) belongs to \(\text{TH}_m (\lambda, v, \alpha) ; \lambda \geq 1 \) then the function
\[
\sum_{i=1}^{\infty} t_i f_{i,v}(z)
\]
is also in \(\text{TH}_m (\lambda, v, \alpha) \) where \(f_{i,v} \) is defined by
\[
f_{i,v} = z^m - \sum_{n=2}^{\infty} |a_{m+n-1,i}| z^{n+m-1} + (-1)^i \sum_{n=1}^{\infty} |b_{m+n-1,i}| z^{n+m-1} (i = 1, 2, \ldots)
\]
and \(0 \leq t_i < 1, \sum_{i=1}^{\infty} t_i = 1 \).

m) **Definition 2**

The harmonic generalized Bernardi-Libera-Livingston integral operator \(L_c (f(z)) \) for \(m \)-valent functions is defined by
\[
L_c (f(z)) = \frac{c + m}{z^c} \int_0^z t^{c-1} h(t) dt + \frac{c + m}{z^c} \int_0^z t^{c-1} g(t) dt, \quad c > -1.
\]

n) **Theorem 13 (Integral Operator)**

Let \(f \in \text{TH}_m (\lambda, v, \alpha) ; \lambda \geq 1 \). Thus \(L_c (D_m f(z)) \) belongs to the class \(\text{TH}_m (\lambda, v, \alpha) \).

o) **Theorem 14 (Convolution Condition)**

Let \(f_v \in \text{TH}_m (\lambda, v, \alpha) \) and \(F_v \in \text{TH}_m (\lambda, v, \alpha) ; \lambda \geq 1 \) then the convolution
\[
(f_v \ast F_v) (z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1,i}| z^{n+m-1} + (-1)^i \sum_{n=1}^{\infty} |b_{n+m-1,i}| z^{n+m-1} \in \text{TH}_m (\lambda, v, \alpha).
\]

p) **Theorem 15 (Radius of Convexity)**

The radius of convexity for the function \(f_v \in \text{TH}_m (\lambda, v) \) is given by
\[
r_0 = \frac{(m+1)^{v-2}}{m} \frac{1}{1 - (2\lambda - 1)|b_m|}, \text{ for } \lambda \geq 1.
\]

q) **Theorem 16 (Radius of Starlikeness)**

The radius of starlikeness for the function \(f_v \in \text{TH}_m (\lambda, v) \) is given by
\[
r_0 = \frac{(m+1)^{v-1}}{m} \frac{1}{1 - (2\lambda - 1)|b_m|}, \text{ for } \lambda \geq 1.
\]

References Références Referencias