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Kinematics and Dynamics of a Particle in
Gravitation Field

Dubrovskyi |

Abstract- It is accepted that three-dimensional physical space
is a hypersurface with a Riemannian metric in four-dimensional
space. The metric tensor of this three-dimensional space is
defined by Einstein's equations. Another coordinate of four-
dimensional space is time. In this space, the equations of the
world line of a particle with a mass IM are defined under
certain initial conditions: the starting point of the space and the
vector of the particle's initial velocity. This approach removes
all the problems and contradictions noted in the monograph
[1], and the resulting equations adequately describe, for
example, the curvilinear motion of planets without energy
change.

Keywords. general theory of relativity, metric tensor,
hypersurface, Riemannian geometry, geodesic line,
gravitational field, equations of motion.

I.  INTRODUCTION

espite its long history and the work of
Doutstanding physicists, the general theory of

relativity still contains a number of fundamental
contradictions and unresolved issues. Attention is drawn
to them in the monograph [1] in the chapters on the
General Theory of Relativity (GR), which "is perhaps the
most beautiful of all existing physical theories." In this
work, we will show that all these problems are removed
if, from the very beginning, changes are made to the
mathematical definition of the properties of space, in
which the GRelativity is described. As a sign that this is
not a four-dimensional space, all of whose axes are
mathematically the same, let's call it "space (3 + 1)".

[I.  GEOMETRY OF SPACE (3 + 1)

The tasks of GR mechanics can be divided into
several levels: the cosmos as a whole, a galaxy, a binary
star, and the last one is a point particle in a gravitational
field, the scale of which is much larger than the size of
the particle, and the particle's own field is much weaker
than the external one. So you can consider a planet in
the field of a star and a small body in the field of a
planet. At each level, it can be assumed that the
gravitational field is created by an object of a higher
level and it can be considered stationary in those
periods of time that are considered. Particle kinematics -
the simplest problem of mechanics - describes the
inertial world line of a point particle in the absence of
any external force. For this, the differential geometry of
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the four-dimensional space-time is used, which takes
into account the difference in the properties of time and
space. The main features of this type of space follow
from the formulation of the physical problem [1], but
then the geometry is constructed purely mathematically.
Consider the four-dimensional Euclidean space as the
initial concept for describing the physical space-time. In
some coordinate system, given by the starting point and
four non-collinear axes, each point in space

corresponds to four numbers (xo,xl,x21x3) that are

the coordinates of this point. To use the apparatus of
differential geometry, it is necessary to pass to
curvilinear coordinates. To do this, we introduce four
linearly independent continuous differentiable functions

X'=f (xO,xl,xz,xs’), This coordinate transformation

must be reversible and differentiable. At each point M of
space, four coordinate lines intersect. They are
determined by a change in one of the coordinates with
fixed values of the other three corresponding to the point
M. The tangents to these lines are linearly independent
and form a local frame. Any vector drawn from the point
M can be decomposed with respect to this frame. Now
the same Euclidean space is described in curvilinear
coordinates. The transition to curvilinear coordinates is
unambiguous and reversible. This is due to the fact that
the Euclidean space is affine. In addition, in the
geometry of the physical space-time, three spatial
coordinates must be equivalent, and the time coordinate
must differ in special properties. Therefore, we will call
such a space not four-dimensional, but the space
(8 + 1). Special Theory of Relativity (SR) is not
described in four-dimensional Euclidean space, but in
(8+1) Minkowski space, which is called “index one
pseudo-Euclidean space”. In this space, the time
coordinate is a purely imaginary number. This made it
possible to simply describe all the differences between
the mechanics of the SR and classical mechanics. But
with such a choice of one of the coordinate axes, the
transition to curvilinear coordinates described above
would lead to the fact that all coordinates X" become
complex numbers and the selection of the time
coordinate disappears.

The properties of the space (3+1) can be
described by the properties of the metric tensor of this
space. This possibility has long been used in describing
the kinematics of the GR, but in well-known monographs
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on this theory, the description of the properties of the
metric tensor is not presented systematically.

A multidimensional space is called metric if the
scalar product of vectors (A- B) = GikAi B¥is defined in
it. Here A,B are the vectors plotted from one point in
space, A',B¥— their components in the local frame of
this point, G, — are the components of the symmetric
tensor. (Hereinafter, the usual rule of summation over
repeated indices is adopted. Indexes denoted in Latin
letters take the values 0, 1, 2, 3; indexes denoted in
Greek letters take the values 1, 2, 3). The metric tensor

”G” is a rank 4 symmetric non-singular matrix whose

components generally depend on the coordinates. Like
any real symmetric non-singular matrix, the metric
tensor at each point in space can be reduced to a
diagonal form, that is, there is such a real non-singular
matrix ||D| that the matrix ||D||_l||G||||D||=HGH is
diagonal (this is indicated by a bar over the matrix
character). If the components of the metric tensor
depend on the coordinates, then its diagonal
components also depend on the coordinates.

The matrix can also be reduced to a diagonal
form by introducing a rectilinear orthogonal coordinate
system at the selected point, which is called Galilean.
Such a ftransformation reveals properties that are
important for what follows. At the origin, located at a
chosen point in  space, generally speaking,
inhomogeneous, the metric tensor will be exactly
diagonal, as in the case of an algebraic transformation
of the matrix but for small deviations from the origin, the
off-diagonal components will be of the second order of
smallness in deviations. If the space is Euclidean, then
the metric tensor does not depend on the coordinates
and can be reduced to a diagonal form by introducing
Galilean coordinates throughout the space.

The matrix |DJ or orientation of the Galilean
coordinates frame can be chosen in an infinite number

of ways. In this case, the metric tensor of the space
(3+1) SR always has the form {see [1] formula (6.5)}:

1 0 0 O

o=l o o of @Y
0 0 -1 0
0 0 0 -

Further we will denote the metric tensor
and its components {j; .

Let us describe the difference in the physical
meaning of the zero row and the remaining three rows of
the metric tensor matrix. The theory should describe not
the trajectory of a particle in three-dimensional space,

el
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but the world line in four-dimensional space-time (3+1).
General view of the world line:

s{x0 = ct,xl(t),xz(t),x3(t)}.

Here T— time, a continuously changing
parameter dt >0, x®— a coordinate proportional to
time with the coefficient ¢ — of the electromagnetic
wave velocity in vacuum, the remaining variables X* (t)
are coordinates of a point in a certain system of
curvilinear coordinates in a curved three-dimensional
space.

The metric tensor of a homogeneous space
(3+1) in Galilean coordinates ||GO|| is defined by the
equality

@2

g; =6; (25, -1). (23)
Let us establish the rule that if the matrix is
diagonal, then the rows whose diagonal element is
positive are located in the upper part of the matrix. This
rule was introduced in the monograph [1] and is called
the signature. In the described case, the diagonal
element is positive in the top row, and are negative in
the remaining rows. This defines an important property
of the space: a sequence of signs in an invariant
quadratic form that describe the curve arc differential:

ds? = (o)~ (axt) — () (o). e

The main axiom of the GR: in a gravitational
field, it is possible to bring the metric tensor to a
diagonal form only locally at each point in space. This
geometry is called Riemannian geometry. The
fundamental Einstein equation relates the curvature of
space to the distribution and movement of mass in
space. We consider a stationary gravitational field.
Therefore, the energy-momentum tensor does not
depend on time, and the zero value of the indices does
not make sense. The geometry of three-dimensional
space is determined by the Einstein equations, in which
the indices take only the values 1, 2, 3.

1 8rk
Raﬁ _EgaﬂR: ?Taﬂ'

(2.9)

Here the constant K is the gravitational
constant, Ta are components of the energy-
momentum tensor of the mass that creates the
gravitational field, the Ricci tensor |R| and its
convolution R (scalar curvature) are expressed in terms
of the metric tensor of three-dimensional space and its
derivatives with respect to coordinates. If the space is
flat, then the Ricci tensor is identically equal to zero.



Then, obviously, the energy-momentum tensor is also
equal to zero. The converse is also true: if the energy-
momentum tensor is identically equal to zero, then the
space is flat, i.e., Euclidean.

Einstein's equations define the matrix of the
metric tensor of the three-dimensional Riemannian

space ”gw(r)”, components of this matrix are

functions of the point at which the metric is defined. The
metric space tensor (3+1) can be represented by a

cellular matrix
B goo(r) 9o, =0
9=, lo,.. ()

This matrix must be cell-diagonal. This means
that three-dimensional space is a hypersurface in four-
dimensional space on which a Riemannian metric is
defined.

This definition of the metric tensor in (3+1)
space is the main new mathematical proposition in this
paper. Further, we will show that if it is accepted, the
entire further theory of the motion of a particle in a
gravitational field is built logically sequentially. All the
problems noted but not resolved in the monograph [1]
disappear, and the limiting transition to the special
theory of relativity becomes clear. In [1] the metric
tensor of three-dimensional space was also introduced,
but it was obtained as a result of a thought experiment,
which is incorrect for geometry. As a result the formula
expressing its components in terms of the components
of the metric tensor of the four-dimensional space is
incorrect. The identity ¢, =0 means that all

(2.6)

components in this row and column, except for the
diagonal one, are equal to zero; g, =g (r)is a scalar
function of spatial coordinates. The coordinate I is a
three-dimensional space vector; in contrast to 4-vectors,
we will denote them by small letters.

Let's move on to Galilean coordinates at a fixed
spatial point I' and reduce to diagonal form the matrix
||G(r)|| To reduce to diagonal form a cell matrix of the
fourth rank, it is necessary to reduce to diagonal form
only the matrix of the third rank "gw(r)". The metric
tensor of three-dimensional space defines by Einstein's
equation (2.5) for three-dimensional space. This is a
matrix of the third rank with components gaﬂ. The
characteristic equation of such a matrix is the equation
of the third degree. Therefore, it has one, two or three
real roots. The components of the metric tensor”g,,v(r)”
reduced to a diagonal form in Galilean coordinates must
be equal to each other. The metric tensor of a three-
dimensional space, reduced to a diagonal form at a
point ', should have the form:

1 0 0
ng(r)Hzg(r) 0 -1 0f, e
0 0 -

where g(r) is a real function of spatial coordinates.
That is the real root of the cubic characteristic equation
of the matrix ”gw (r )” :

y’—ay’+by—-c=0

a=0y +095 +0s, b:[glzz"'9132+9232_911922_933922_933911}

(2.8)

C=019,093"— [g 19 232 +9:0 132 +9:0 212] +20,0,04

If there are two or three such roots, then one
can choose a single value based on physical
considerations. For example, if space should tend to
flatten as it moves away from a certain point or area,

then the function g(r) should tend to unity. The
function g(r) must be positive. The equation
g(r):o defines a surface in space separating the
accessible g(r)>0  and inaccessible g(r)<o0
regions of space, and the inaccessible region must be
limited if the mass that creates the energy-momentum
tensor that determines the gravitational field in Einstein's
equations occupies some limited volume. For example,

in the case of spherical symmetry the function g(r)
must be proportional to (r —ro)/r, where I is the
radius of the Schwarzschild sphere.

Let goo(r)= g(r?. Let us emphasize that this
condition is necessary for the cell matrix to be
proportional to the metric tensor (2.3). Then formula
(2.6) can be represented as:
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9(r)

gOa EO

gOa = O
IS

9=

Total metric space tensor (3+1) in Galilean
coordinates at each point I .

1 0 0 O

O -1 0 O
”G”:g(r) 0 0 -1 O (2.10)

O 0 0 -1

We will not present differential geometry. It is
described in sufficient detail in the monograph [1]: §83,

=g(r)

1 gOa
9o, =0 |[Gs]/9(r)]f

§85, §86. We give only some definitions and formulas
necessary for further presentation.

The space (3+1) is a special case of a four-
dimensional space with a metric tensor defined by us.
Therefore, general concepts and formulas can be used,
taking into account formula (2.9). The curve in the space
(8+1) is generally given in the  form

S[X0 :C'[,Xl(t),x2 (t),x3(t)}. The tangent vector

to this curve U is defined by the equations (see

1, §7]):

(2.9)

ds=dt¢c2 %

U'=dx/ds; yo—cdt___ 1

The general definition of a geodesic line is a line
whose tangents are parallel at any point. In addition, the
length of the tangent segment, given at one, arbitrarily
chosen point, is preserved in the Riemannian space.
Through any point in space in any direction it is possible
to draw a geodesic and only one. In different sources,
you can find different definitions of the equations of a
geodesic line. Usually they are represented as the
equality to zero of the sum of the derivative of the
corresponding component of the vector U along the
length of the arc and the term proportional to the
connection coefficient, which is determined by a linear
combination of the derivatives of the metric tensor with
respect to the coordinates.

For our purposes, it is more convenient to use
the form of differential equations of a geodesic line
presented in the monograph [2]:

au,
ds

_E%U kU' =0.

. (2.12)
2 oX

Since we know the diagonal form of the matrix
in this equality, using this, we get:

du,
ds

59

(1)

oX'

|U| (2.13)
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)2+(v2)2+(v3) =cdt./1-|v| /c v

dx
ot

v
c«/1—|v|2/c2 ,

KINEMATICS AND DYNAMICS OF A
PARTICLE IN SPACE (3+1)

U=

2.11)

[11.

The main task of mechanics in the macrocosm
is to determine the world lines of particles in various
conditions. In pseudo-Euclidean space, in the absence
of forces, it is always a straight line, determined by the
initial conditions: the starting point and the velocity
vector. This is formulated in Newton's first law - the law
of inertia: "A particle maintains a state of rest or uniform,
rectilinear motion until an external force acts on it." In the
Riemannian space in this law, only the words "..
uniform, rectilinear .." should be replaced by "..
movement at a constant speed." In Euclidean space,
these expressions are equivalent, the velocity vector can
be moved along a straight line. In a Riemannian space,
the parallel translation of a tangent vector from a certain
starting point occurs along a geodesic line.

Let us pass in equations (2.13) from geometric
quantities to physical ones, that is, observable,
measurable and having dimensions. This is a system of
four equations that differ only in the index value. But in
the space (3 + 1), the equation for the time axis (I = 0)
has some differences due to the fact that the function
g(r(t)) depends on time only through the dependence
of coordinates on time, i.e. due to the motion of the
particle. Then we get:



_dY_ 5_9£(U o) - 399 V'

ds 0x“ OX* ¢
Yo B (yoy 39
ds ox“* ox“*

On the right side of the equalities, we pass to
differentiation with respect to time using formulas (2.11).

209 Ve 99 V

(u*)

T ox“ ¢ oX“ ¢
(Uﬂ)z __ 09 |U |2 __ 09 (3.1)
ox“ ox“

We obtain equations expressed in terms of coordinates
and time:

3 du, df 1 ) . &gV
ds dt{/c2-_y2 ox* ¢
p dU°_df v __ 1 & _ da 32)
ds di| c1-v?/c? | cf1-v?/c? dt o
) dE(v))_, dp"__a(meg)
dt| ¢ L dt ox*

Here, as in formulas (2.11), v* = dX“/dt -
spatial velocity, £(v?) is a kinetic energy. If we multiply
the equations by mc, where m is the mass of the particle,
then the function MCg (r) plays the role of a potential.

Then it follows from equations a) and b) that in three-
dimensional space the gravitational force s
perpendicular to the velocity. Therefore, this potential
affects the form of the trajectory, but does not change
the velocity modulus, that is, the kinetic energy. This is a
well-known natural phenomenon: under the influence of
gravity, planets move in closed orbits without changing
their kinetic energy. In our theory, this happened due to
the fact that it was accepted goo(r) =g (I’)

Equations expressed in terms of impulses are
written in line ¢). As is known (see [1]), kinetic energy
can be expressed in terms of spatial impulses and rest
energy. This function is called the Hamiltonian function

H =cym?c®+ p? and the equation for the zero

momentum component is:

iH =0.
dt

This is the law of conservation of energy in a
gravitational field. The remaining three equations
describe Newton's second law: acceleration is
proportional to the acting force.

The monograph [3] formulates the rules for
projecting a Riemannian space onto a flat one. With this
transformation, the geodesic line becomes a straight

(3.3)

line. This is obvious, since the defining property of a
geodesic is the constancy of direction. Then the
opposite is also possible: the transformation of a
straight line into a geodesic. These transformations
open up the possibility of transition to another frame of
reference through Lorentz transformations.

In the monograph [1] in the footnote to § 85: “It
can be shown that by a suitable choice of the
coordinate system it is possible to achieve the vanishing
of all connection coefficients not only at one point, but
also throughout the given world line.” (The proof of this
statement can be found in P. K. Rashevsky's book
'Riemannian Geometry and Tensor Analysis". Nauka,
(1964), §91.)". The solution of the above specific
problem is a special case of the theorem proved in the
monograph [3], therefore, using this theorem, one can
consider the problem of the combined action of
gravitational and electromagnetic fields.

IV. CONCLUSION

The equations of motion of a particle in a
gravitational field are obtained by sequentially taking
into account the position that the physical four-
dimensional space is a distinguished time axis and a
three-dimensional hypersurface, the metric tensor of
which is determined by the Einstein equations. This
approach removes all the problems and contradictions
noted in the monograph [1], and the resulting equations
adequately describe, for example, the curvilinear motion
of planets without energy loss.
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