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  Abstract-
 

It is accepted that three-dimensional physical space is a hypersurface with a 
Riemannian metric in four-dimensional space. The metric tensor of this three-dimensional space 
is defined by Einstein's equations. Another coordinate of four-dimensional space is time. In this 
space, the equations of the world line of a

 
particle with a mass

 
m

 
are defined under certain initial 

conditions: the starting point of the space and the vector of the particle's initial velocity. This 
approach removes all the problems and contradictions noted in the monograph [1], and the 
resulting equations adequately describe, for example, the curvilinear motion of planets without 
energy change.
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I.

 

Introduction

 

 

 

 
II.

 

Geometry

 

of Space (3 + 1)

 

The tasks of GR mechanics can be divided into

 

several levels: the cosmos as a whole, a galaxy, a binary 
star, and the last one is a point particle in a gravitational 
field, the scale of which is much larger than the size of 
the particle, and the particle's own field is much weaker 
than the external one. So you can consider a planet in 
the field of a star and a small body in the field of a 
planet. At each level, it can be assumed that the 
gravitational field is created by an object of a higher 
level and it can be considered stationary in those 
periods of time that are considered. Particle kinematics ˗

 

the simplest problem of mechanics ˗

 

describes the 
inertial world line of a point particle in the absence of 
any external force. For this, the differential geometry of 

the four-dimensional space-time is used, which takes 
into account the difference in the properties of time and 
space. The main features of this type of space follow 
from the formulation of the physical problem [1], but 
then the geometry is constructed purely mathematically. 
Consider the four-dimensional Euclidean space as the 
initial concept for describing the physical space-time. In 
some coordinate system, given by the starting point and 
four non-collinear axes, each point in space 
corresponds to four numbers ( )0 1 2 3, , ,x x x x  that are 

the coordinates of this point. To use the apparatus of 
differential geometry, it is necessary to pass to 
curvilinear coordinates. To do this, we introduce four 
linearly independent continuous differentiable functions

( )0 1 2 3, , , .i
ix f x x x x′ =

 
This coordinate transformation 

must be reversible and differentiable. At each point M of 
space, four coordinate lines intersect. They are 
determined by a change in one of the coordinates with 
fixed values of the other three corresponding to the point 
M. The tangents to these lines are linearly independent 
and form a local frame. Any vector drawn from the point 
M can be decomposed with respect to this frame. Now 
the same Euclidean space is described in curvilinear 
coordinates. The transition to curvilinear coordinates is 
unambiguous and reversible. This is due to the fact that 
the Euclidean space is affine. In addition, in the 
geometry of the physical space-time, three spatial 
coordinates must be equivalent, and the time coordinate 
must differ in special properties. Therefore, we will call 
such a space not four-dimensional, but the space             
(3 + 1). Special Theory of Relativity (SR) is not 
described in four-dimensional Euclidean space, but in 
(3+1) Minkowski space, which is called “index one 
pseudo-Euclidean space”. In this space, the time 
coordinate is a purely imaginary number. This made it 
possible to simply describe all the differences between 
the mechanics of the SR and classical mechanics. But 
with such a choice of one of the coordinate axes, the 
transition to curvilinear coordinates described above 
would lead to the fact that all coordinates ix′  become 
complex numbers and the selection of the time 
coordinate disappears. 

The properties of the space (3+1) can be 
described by the properties of the metric tensor of this 
space. This possibility has long been used in describing 
the kinematics of the GR, but in well-known monographs 
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Abstract- It is accepted that three-dimensional physical space 
is a hypersurface with a Riemannian metric in four-dimensional 
space. The metric tensor of this three-dimensional space is 
defined by Einstein's equations. Another coordinate of four-
dimensional space is time. In this space, the equations of the 
world line of a particle with a mass m are defined under 
certain initial conditions: the starting point of the space and the 
vector of the particle's initial velocity. This approach removes 
all the problems and contradictions noted in the monograph 
[1], and the resulting equations adequately describe, for 
example, the curvilinear motion of planets without energy 
change.
Keywords: general theory of relativity, metric tensor, 
hypersurface, Riemannian geometry, geodesic line, 
gravitational field, equations of motion.

espite its long history and the work of 
outstanding physicists, the general theory of 
relativity still contains a number of fundamental 

contradictions and unresolved issues. Attention is drawn 
to them in the monograph [1] in the chapters on the 
General Theory of Relativity (GR), which "is perhaps the 
most beautiful of all existing physical theories." In this 
work, we will show that all these problems are removed 
if, from the very beginning, changes are made to the 
mathematical definition of the properties of space, in 
which the GRelativity is described. As a sign that this is 
not a four-dimensional space, all of whose axes are 
mathematically the same, let's call it "space (3 + 1)".

D



on this theory, the description of the properties of the 
metric tensor is not presented systematically. 

A multidimensional space is called metric if the 
scalar product of vectors ( ) i k

ikG A B⋅ =A B is defined in 
it. Here ,А В  are the vectors plotted from one point in 
space, ,i kA B −  their components in the local frame of 
this point, ikG −

 
are the components of the symmetric 

tensor. (Hereinafter, the usual rule of summation over 
repeated indices is adopted. Indexes denoted in Latin 
letters take the values 0, 1, 2,

 
3; indexes denoted in 

Greek letters take the values 1, 2, 3).
 
The metric tensor

G is a rank 4
 
symmetric non-singular matrix whose 

components generally depend on the coordinates. Like 
any real symmetric non-singular matrix, the metric 
tensor at each point in space can be reduced to a 
diagonal form, that is, there is such a real non-singular 
matrix D

 

that the matrix 1− ⋅ ⋅ =D G D G

 

is 
diagonal (this is indicated by a bar over the matrix

 character). If the components of the metric tensor 
depend on the coordinates, then its diagonal 
components also depend on the coordinates.

 The matrix can also be reduced to a diagonal 
form by introducing a rectilinear orthogonal coordinate 
system at the selected point, which is called Galilean. 
Such a transformation reveals properties that are 
important for what follows. At the origin, located at a 
chosen point in space, generally speaking, 
inhomogeneous, the metric tensor will be exactly 
diagonal, as in the case of an algebraic transformation 
of the matrix

 

but for small deviations from the origin, the 
off-diagonal components will be of the second order of 
smallness in deviations. If the space is Euclidean, then 
the metric tensor does not depend on the coordinates 
and can be reduced to a diagonal form by introducing 
Galilean coordinates throughout the space.

 The matrix D

 

or orientation
 

of the Galilean 
coordinates frame can be chosen in an infinite number 
of ways.

 

In this case, the metric tensor of the space 
(3+1) SR

 

always has the form

 

{see [1] formula (6.5)}:

 

                      

0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−
=

−
−

G .                 (2.1)
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Further we will denote the metric tensor G
and its components ijg . 

Let us describe the difference in the physical 
meaning of the zero row and the remaining three rows of 
the metric tensor matrix. The theory should describe not 
the trajectory of a particle in three-dimensional space, 

but the world line in four-dimensional space-time (3+1).  
General view of the world line:   

             ( ) ( ) ( ){ }0 1 2 3, , , .s x ct x t x t x t=         (2.2)                          

Here t − time, a continuously changing 
parameter 0dt > , 0x − a coordinate proportional to 
time with the coefficient с − of the electromagnetic 
wave velocity in vacuum, the remaining variables ( )x tα

are coordinates of a point in a certain system of 
curvilinear coordinates in a curved three-dimensional 
space.

The metric tensor of a homogeneous space 
(3+1) in Galilean coordinates 0G is defined by the 
equality 

                        
( )02 1 .ij ij iδ δ= −g

                      
(2.3)

Let us establish the rule that if the matrix is 
diagonal, then the rows whose diagonal element is 
positive are located in the upper part of the matrix. This 
rule was introduced in the monograph [1] and is called 
the signature. In the described case, the diagonal 
element is positive in the top row, and are negative in 
the remaining rows. This defines an important property 
of the space: a sequence of signs in an invariant 
quadratic form that describe the curve arc differential:

( ) ( ) ( ) ( )2 2 2 22 0 1 2 3ds dx dx dx dx= − − − . (2.4)                             

The main axiom of the GR: in a gravitational 
field, it is possible to bring the metric tensor to a 
diagonal form only locally at each point in space. This 
geometry is called Riemannian geometry. The 
fundamental  Einstein equation relates the curvature of 
space to the distribution and movement of mass in 
space. We consider a stationary gravitational field. 
Therefore, the energy-momentum tensor does not 
depend on time, and the zero value of the indices does 
not make sense. The geometry of three-dimensional 
space is determined by the Einstein equations, in which 
the indices take only the values 1, 2, 3.

                      
4

1 8 .
2

kR
cαβ αβ αβ
π

− =R g T           (2.5)                               

Here the constant k is the gravitational 
constant, αβT are components of the energy-
momentum tensor of the mass that creates the 
gravitational field, the Ricci tensor R and its 
convolution R (scalar curvature) are expressed in terms 
of the metric tensor of three-dimensional space and its 
derivatives with respect to coordinates. If the space is 
flat, then the Ricci tensor is identically equal to zero. 
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2 2 2
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    0

     ,   .

            2

y ay by c

a b

c

− + − =

 = + + = + + − − − 

 = − + + + 

g g g g g g g g g g g g

g g g g g g g g g g g g
             

(2.8)

 

If there are two or three such roots, then one 
can choose a single value based on physical 
considerations. For example, if space should tend to 
flatten as it moves away from a certain point or area, 
then the function ( )g r

 
should tend to unity. The 

function ( )g r   must be positive. The equation 

( ) 0g =r   defines a surface in space separating the 
accessible ( ) 0g >r   and inaccessible ( ) 0g <r   
regions of space, and the inaccessible region must be 
limited if the mass that creates the energy-momentum 
tensor that determines the gravitational field in Einstein's 
equations occupies some limited volume. For example, 

  

 

Let ( ) ( )00 .g=r rg

 

Let us emphasize that this 
condition is necessary for the cell matrix to be 
proportional to the metric tensor (2.3). Then formula 
(2.6) can be represented as:
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in the case of spherical symmetry the function ( )g r
must be proportional to ( )0r r r− , where 0r is the 
radius of the Schwarzschild sphere.

Then, obviously, the energy-momentum tensor is also 
equal to zero. The converse is also true: if the energy-
momentum tensor is identically equal to zero, then the 
space is flat, i.e., Euclidean.

Einstein's equations define the matrix of the 
metric tensor of the three-dimensional Riemannian 

space ( )µν rg , components of this matrix are 

functions of the point at which the metric is defined. The 
metric space tensor (3+1) can be represented by a 
cellular matrix

                   

( )
( )

00 0

0

0
.

0
α

α µν

≡
=

≡

r

r

g g
G

g g
        (2.6)

This matrix must be cell-diagonal. This means 
that three-dimensional space is a hypersurface in four-
dimensional space on which a Riemannian metric is 
defined. 

This definition of the metric tensor in (3+1) 
space is the main new mathematical proposition in this 
paper. Further, we will show that if it is accepted, the 
entire further theory of the motion of a particle in a 
gravitational field is built logically sequentially. All the 
problems noted but not resolved in the monograph [1] 
disappear, and the limiting transition to the special 
theory of relativity becomes clear. In [1] the metric 
tensor of three-dimensional space was also introduced, 
but it was obtained as a result of a thought experiment, 
which is incorrect for geometry. As a result the formula 
expressing its components in terms of the components 
of the metric tensor of the four-dimensional space is 
incorrect. The identity 0 0α ≡g means that all 

components in this row and column, except for the 
diagonal one, are equal to zero; ( )00 = rg g is a scalar 
function of spatial coordinates. The coordinate r is a 
three-dimensional space vector; in contrast to 4-vectors, 
we will denote them by small letters.

Let's move on to Galilean coordinates at a fixed 
spatial point r and reduce to diagonal form the matrix

( )rG . To reduce to diagonal form a cell matrix of the 
fourth rank, it is necessary to reduce to diagonal form 
only the matrix of the third rank ( )µν rg . The metric 
tensor of three-dimensional space defines by Einstein's 
equation (2.5) for three-dimensional space. This is a 
matrix of the third rank with components αβg . The 
characteristic equation of such a matrix is the equation 
of the third degree.  Therefore, it has one, two or three 
real roots. The components of the metric tensor ( )µν rg

reduced to a diagonal form in Galilean coordinates must 
be equal to each other. The metric tensor of a three-
dimensional space, reduced to a diagonal form at a 
point r , should have the form:

       

( ) ( )
1 0 0

0 1 0 ,
0 0 1

gµν

−
= −

−
r rg         (2.7)

                                

where ( )g r   is a real function of spatial coordinates. 
That is the real root of the cubic characteristic equation 
of the matrix ( )µν rg : 



                                      

( ) ( ) ( )
00

00

1 00
.

00 SS

g
g

g
αα

αα

≡≡
= ≡

≡≡
r

r
r

gg
G

g Gg G
                          (2.9) 

Total metric space tensor (3+1) in Galilean 
coordinates at each point :r  

             

( )

1 0 0 0
0 1 0 0

.
0 0 1 0
0 0 0 1

g
−

=
−

−

rG

      

(2.10)
 

We will not present differential geometry. It is 
described in sufficient detail in the monograph [1]: §83, 

§85, §86. We give only some definitions and formulas 
necessary for further presentation.

 

The space (3+1) is a special case of a four-
dimensional space with a metric tensor defined by us. 
Therefore, general concepts and formulas can be used, 
taking into account formula (2.9). The curve in the space 
(3+1) is generally given in the form 

( ) ( ) ( )0 1 2 3, , ,s x ct x t x t x t =  . The tangent vector 

to this curve U   is defined by the equations (see                        
[1, §7]): 
 

               

( ) ( ) ( )2 2 2 22 1 2 3 2

20

2 22 2

       1 ;  ;

1;  ,  ,   1
1 1

i i

dxds dt c v v v cdt c v
dt

dt vU dx ds U c U
ds c c c

α
α

α
α

= − + + = − =

= = = = =
− −

v

U
v v

.                

 

(2.11)

 

The general definition of a geodesic line is a line 
whose tangents are parallel at any point. In addition, the 
length of the tangent segment, given at one, arbitrarily 
chosen point, is preserved in the Riemannian space. 
Through any point in space in any direction it is possible 
to draw a geodesic and only one. In different sources, 
you can find different definitions of the equations of a 
geodesic line. Usually they are represented as the 
equality to zero of the sum of the derivative of the 
corresponding component of the vector U

 

along the 
length of the arc and the term proportional to the 
connection coefficient, which is determined by a linear 
combination of the derivatives of the metric tensor with 
respect to the coordinates.

 

For our purposes, it is more convenient to use 
the form of differential equations of a geodesic line 
presented in the monograph [2]:

 

                  

 1 0.
2

k li kl
i

dU g U U
ds x

∂
− =

∂              
(2.12)

 

Since we know the diagonal form of the matrix 
in this equality, using this, we get:

 

             

( ) ( )2 .i
i i

g gdU
ds x x

∂ ∂
= =

∂ ∂
r r

U
           

(2.13)

 

 

III.

 

Kinematics

 

and

 

Dynamics of a 
Particle

 

in Space (3+1)

 

The main task of mechanics in the macrocosm 
is to determine the world lines of particles in various 
conditions. In pseudo-Euclidean space, in the absence 
of forces, it is always a straight line, determined by the 
initial conditions: the starting point and the velocity 
vector. This is formulated in Newton's first law -

 

the law 
of inertia: "A particle maintains a state of rest or uniform, 
rectilinear motion until an external force acts on it." In the 
Riemannian space in this law, only the words "... 
uniform, rectilinear ..." should be replaced by "... 
movement at a constant speed." In Euclidean space, 
these expressions are equivalent, the velocity vector can 
be moved along a straight line. In a Riemannian space, 
the parallel translation of a tangent vector from a certain 
starting point occurs along a geodesic line.

 

Let us pass in equations (2.13) from geometric 
quantities to physical ones, that is, observable, 
measurable and having dimensions. This is a system of 
four equations that differ only in the index value. But in 
the space (3 + 1), the equation for the time axis ( 0i = ) 
has some differences due to the fact that the function 

( )( )g tr

 

depends on time only through the dependence 
of coordinates on time, i.e. due to the motion of the 
particle. Then we get:
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(3.1)

 

On the right side of the equalities, we pass to 
differentiation with respect to time using formulas (2.11). 

We obtain equations expressed in terms of coordinates 
and time: 

 

                
           

( ) ( )

0
2 2

2 2 2 2

2

1 a)                 0

1 b)    .     
1 1

 c)                0,    ,   

dU d g v
ds dt x cc

dU d v dv g
ds dt dt xc c c c

mcgd dp
dt c dt x

α

α

α α α

α

α

α

  ∂
= = =  ∂− 

  ∂
 = = = −
  ∂− − 

  ∂
  = = −
  ∂ 

v

v v

vE

                  

(3.2)
 

Here, as in formulas (2.11), v dx dtα α= ˗  
spatial velocity, ( )2vE  is a kinetic

 
energy. If we multiply 

the equations by тс, where т is the mass of the particle, 
then the function ( )mcg r  plays the role of a potential. 
Then it follows from equations a) and b) that in three-
dimensional space the gravitational force is 
perpendicular to the velocity. Therefore, this potential 
affects the form of the trajectory, but does not change 
the velocity modulus, that is, the kinetic energy. This is a 
well-known natural phenomenon: under the influence of 
gravity, planets move in closed orbits without changing 
their kinetic energy. In our theory, this happened due to 
the fact that it was accepted ( ) ( )00 .g=r rg  

Equations expressed in terms of impulses are 
written in line c). As is known (see [1]), kinetic energy 
can be expressed in terms of spatial impulses and rest 
energy. This function is called the Hamiltonian function 

2 2 2c m c= + pH  
and the equation for the zero 

momentum component is:
 

                                    

0d
dt

=H  
.                         (3.3)

 

This is the law of conservation of energy in a 
gravitational field. The remaining three equations 
describe Newton's second law: acceleration is 
proportional to the acting force. 

The monograph [3] formulates the rules for 
projecting a Riemannian space onto a flat one. With this 
transformation, the geodesic line becomes a straight 

line. This is obvious, since the defining property of a
 

geodesic is the constancy of direction. Then the 
opposite is also possible: the transformation of a 
straight line into a geodesic. These transformations 
open up the possibility of transition to another frame of 
reference through Lorentz transformations.

 

 

IV.
 

Conclusion
 

 

 

 
 
 
 

        

1

Y
ea

r
20

22

23

© 2022 Global Journals

       

               

                          

                   

  

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
II  
 I
ss
ue

  
  
 e

rs
io
n 

I 
 

V
II

  
 

( A
)

Kinematics and Dynamics of a Particle in Gravitation Field

In the monograph [1] in the footnote to § 85: “It 
can be shown that by a suitable choice of the 
coordinate system it is possible to achieve the vanishing 
of all connection coefficients not only at one point, but 
also throughout the given world line.” (The proof of this 
statement can be found in P. K. Rashevsky's book 
"Riemannian Geometry and Tensor Analysis". Nauka, 
(1964), §91.)". The solution of the above specific 
problem is a special case of the theorem proved in the 
monograph [3], therefore, using this theorem, one can 
consider the problem of the combined action of 
gravitational and electromagnetic fields.

The equations of motion of a particle in a 
gravitational field are obtained by sequentially taking 
into account the position that the physical four-
dimensional space is a distinguished time axis and a 
three-dimensional hypersurface, the metric tensor of 
which is determined by the Einstein equations. This 
approach removes all the problems and contradictions 
noted in the monograph [1], and the resulting equations 
adequately describe, for example, the curvilinear motion 
of planets without energy loss.

( ) ( )

( ) ( )

2 2 200

2 2 20

3

       3

U g v g v g v g vU U U
d

dU g g g gU U U
ds x x x x

α α α α
µ

α α α α

µα
α α α α

∂ ∂ ∂ ∂
= − = =
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= − + = − = −

∂ ∂ ∂ ∂

s x c x c x c x c
d
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