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Gang Lee

Abstract- In this paper we calculated the self-interaction of the gravitational field, and
analyzed the effect of the self-interactions in a general static isotropic gravitational field
using a semi classical approach. We found that the effects of the self- interaction in the
gravitational field can be used to explain dark matter.

. INTRODUCTION

This paper discusses the effects of self-interaction of gravitational field and finds
that it can be used to explain dark matter. In section 2, we calculated the
self-interaction of the gravitational field. We analyzed the effect of the self-
interaction of a general static isotropic gravitational field using a semi classical
approach. In section 3, we found a symmetry of the Klein-Gordon equation in
the noncommutative quantum gravitational field.

[I.  NONCOMMUTATIVE QUANTUM GRAVITY
AND SELF INTERACTION

Let’s briefly review the theory of noncommutative quantum gravity while refer-
ring to [1] for more details.

Since the introduction of the uncertainty principle into the general theory of
relativity, we get a semiclassical graviton approximate to the Dirac J-function
as follows

£ (@, X) = X + C%(x) - exp(—

=) (21)

Lp(d?)

The free field equation is
00,E%(x) =0 (2.2)

At the point z, the local inertial coordinate is £*(x, X)| v—o- Then the metric
associated with £ is

&~ o (&P
g/.w($) = ( €a|$)’i:0) (éaLX,,:O) Nap

B oC* (x) 805(33)
- Ogm oxY M
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In any point x of gravitational field, due to the ductility of gravitons, gravi-
tons elsewhere will act on the point x together. all another gravitons excited at
a distance of [ = [* from point x can be written as

AL :X+/d4l§a((x—|—l), 1))

:X+/d4l (Ca(erl) exp(— ‘Lp(xlﬂ)’)) (2.4)

Then after considering the effects of all gravitons, the locally inertial coor-
dinate system £% at point x have to written as

ME™) =€% (2, X)| g + AE" (2.5)

The field C*(z + 1) also satisfy the free field equation, it can be written as

Cz+1) = /d4k (ca(k) exp (ik(z +1)) + (C(k))* exp (— ik(z + 1 )))

= /d4k (C’O‘(k) exp(ikz) exp(ikl) + (C*(k))" exp(—ikx) exp(—ikl )) (2.6)

Then we have

oaeny O (e 1) o= ‘Lp@lm’))

oxH oxH

= / d*kd*l

(ikuCo‘(k‘) exp(ikx) exp(ikl)

2.7)

— ik, (C°(k))" exp(—ika) exp(~ikl)) - exp( ‘Lpl(k) M

2|Lp| , 2|Lp| | . _
4 « e o _
/d (1_ ikLp ik, C* (k) exp(ikz) 1—|—ikLka“ (C(k))" exp(—ikz)

In momentum space, the metric with the self-interaction can be written as
follows



ON(E™) OA(E")

Guv [)‘(5)] = O OV Nap

o(&(w, X) |y + A7) 0(&(w, X)|y_, + A7) (2.8)
- ozt oxV Mo
= g€+ 90 +9%2)
By Eq.(2.7) we get
Gulé] = [ [ ath (i, 1) ex(ike) — i (C*(0)" exp(-ika)
(2.9)
. /d4k (ikycﬁ(k‘) exp(ikx) — ik, (C'ﬂ(k‘)yk exp(—ikzx))] “Nap
gy =2 [ / &k (1 i'f]:L ik, O (k) exp(ika) — %iku (C* (k)" exp(—ika) .
2.10
: / d*k (ik;,,Cﬂ(k) exp(ikz) — ik, (Cﬂ(k))*exp(—ikx)>] Mag
92 = [/d“k (mz'kﬂca(k) exp(ikz) — %ik# (C%(k))* exp(—ikz) o
2.11
. /d4k <1 ﬂf]:L(];)(k) ikl,C'ﬁ(k) exp(ikz) — T bl o(E i%l:éi)(k) ik, (Cﬁ(k))* exp(ikx))] “Nas
Denote
_ _ 2|Lp(k)| iy —  2Lp (k)|
J(k) =g —i—ik};Lp(k)’ Pk =5 —z’k};Lp(k) (2.12)

Using the mean value theorem of definite integrals, we have

g =2. [/d“k (f(k) ik, O (k) exp(ikx)) — dk (f*(k) ik, (C*(k))* exp(—ikx))]

: l / d*k (ikycﬁ(k) exp(ikx) — ik, (Cﬂ(k))*exp(—ikx))] “Nap
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—2. [f«» [ ath (ucm @y exptit)) = 767) - [ ik (€)' exP(_m)))

. /d4k‘ (ikycﬁ(k) exp(ikx) — ik, (C’ﬁ(k))* exp(—ikx))] Mg (2.13)

g2 = -/d“k (f(k) ik, C (k) exp(ikx)) p (f*(k) ik, (Co‘(k;))*exp(—ikx))

/d4k (f(k) ik, CP (k) exp(ikx)) — d*k (f*(lc) ik, (CP (k)" exp(—ikx)) N

(2.14)

= (¢ / d'k (ikMC“(k)exp(ik:x)) — P - / d'k (z’ku (Ca(k‘))*exp(—ikx))]

16 - / a'% ik, C7 (k) exp(ika)) = 1*(¢7) - / 'k (ks (€7 (k))*exp(‘““”)ﬂ o

where f(¢) is the mean value of f(k), f*(¢*) is the mean value of f*(k).

Now we found the self-interaction g,(tl,j) + g,(fl,) of the noncommutative quantum

gravity.

Let’s discuss a macroscopic system by a semi classical approach, the case of
a general static isotropic gravitational field. The general static isotropic metric
is:

ds® = gppdr® + r2d0? + 1% sin® 0dg® — gy dt®

. (2.15)
2MG1™ 2MG
Grr = 1—— y Gt = 1-
r
We can also express it in the equivalent isotropic form, by introducing a new
radius variable p
1
P=3 [r -~ MG+ (r? — QmGr)l/z} (2.16)
or
MG\®
2p
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Substituting it into Eq.(2.15) gives the isotropic form as follows

4 _ 2
ds* = (1 - MG) (dp* + p*do* + p? sin’ 0dp*) — <(1 MG /2p)

% i e ) 219

Compare Eq.(2.9) and Eq.(2.15), we can obtain that the element g, is

grl€] = l [ (imam exp(ika) — ik, (C*(k))" exp(—ikm)

: / d'k (ierﬁ(k)eXP(ikx) — ik, (C” (k))*eXP(—ikx)ﬂ e (9.19)

Then for the element g,..[€] of the general static isotropic metric, we have

/d4 (zk C*(k) exp(ikx) ) /d4 (— ik, ( Co‘(k))*exp(—ikx)>

—1/2
_ % {1 _ QMG} (2.20)

Denote

__2[Lp(R)| iy - 2lLp(R)|
IO = Lewy T = T ® (221)
Using the mean value theorem of definite integrals, we have
/ d*k ( f(k) - ik,.C*(k) exp(ikx))
= 116 [t (i Coyexpiiko) (2.22)

~ 1G) - [1—2‘]”7?}

© 2024 Global Journals

Year 2024

H
w

|

Version

[ssue I

Global Journal of Science Frontier Research (A ) XXIV



Year 2024

(63}
!

Global Journal of Science Frontier Research ( A ') XXIV Issue II Version I

[t (5209 (= ik €20 expl-ik) )

= 116 [tk (= ity (1) expl—iko)) (223)
—1/2
— 1) 1= 22
Then gﬁp is
1 _ ap, (2L o : 20Lp(R)| . raqgyy ,
g =2. [/d (1+szLp 0 ik, C®(k) exp(ikz) — mzkr (C*(k)) exp(—zkm))

: / d*k (z’kTC’ﬁ(k‘) exp(ikz) — ik, (Cﬁ(k))*exp(—ikw))] “Nap

(2.24)

r

2] ] 2]

And gM is

g2 = l/ &k ( et k0“<k>exp<ikx>—Wimca(k»*exp(—zkw))

1+ szp 1 —ikLp(k)

[tk (i o etk - 2O i, (09)° e"p(_ikz)ﬂ o

1+ ikLp(k) 1— ikLp(k)
(2.25)
-1/2 —1/2
- [f(g» [ 2E)  ereg - 2E ]
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Denote the true metric g,, = g, + g,(},,) + g,(fl,) for short. The element g,

of the true general static isotropic metric can be written as follows

= (1 ZELIGLY [ 20y
And gy, is
B = (1 + W)Q : {1 — QJ\fG] (2.27)

Due to the general static isotropic gravitational field, we have

Zop =12, Byp =1’ sind (2.28)
Denote
A, = f(cr);f(c:) . A= M (2.29)

Then the true metric g, can be written as

oMG1 !
ds? = (1+ Ar)2 . [1 — G] dr? + r2df? + r?sin? 9d¢2
r

(2.30)
— (144, [1 - 2]\/.[6’} dt?

We can also express the true metric g, in the equivalent isotropic form, by
introducing a new radius variable p

. ) B - 1/2
p=5| (1+4) 1-r—MG+((1+Ar) *or? —2MG(1+4,) 1-r) ] (2:31)

or
MG\®
r=p(l+A,) (1 + ) (2.32)
2p
Substituting it into Eq.(2.15) gives the isotropic form as follows
MG\*
ds? = (14 A,)? - (1 — 2) (dp® + p*db® + p” sin® 0dg*)
r (2.33)
1— MG/2p\*
— (1A (2R ar?
(1440 <1 +MG/2p)
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Compare with the metric g,, (2.15) or (2.18), due to the self-interaction,
the spacetime described by the true metric g,, has been expanded compared
to the space described by metric g,,[¢]. The radius has expanded to 1 + A,
times. Because the boundary condition is determined by the same gravitational
field equation, from the view point of gravity, the extended spacetime described
by the true metric g, is equivalent to the spacetime described by the metric
guv[§]. The spacetime described by the metric g, [¢] follows the inverse square
law, therefore the gravity of the extended spacetime is stronger than what is
given by the inverse square law. In the spacetime described by the true metric
8uv, the gravity at a distance of (1 + A;) -r from the gravitational source
is equal to the gravity of the inverse square law at a distance of r from the
gravitational source. It is not modified on the inverse square law, because the
boundary condition still determined by the Einstein’s field equation.

The mean value A, is related to the boundary condition determined by the
Einstein’s field equation. In the general static isotropic gravitational field, the
only parameter is the mass M of the gravitational source. We can expect that
the stronger the gravitational source, the stronger the energy-momentum k of
the excited gravitons, and the larger the median value A,.. So that if the galaxy
with strong enough gravitational source is large enough, the distance from the
gravitational source is far enough, the deviation from the inverse square law can
be observed.

The self-interaction of the gravitational field also changes the energy-momentum

tensor of the gravitational field itself. Let’s briefly explain. From the canonical
field theory, the energy-momentum tensor of the gravitational field itself is

b (@) = =22 NE)IAE s + DAEN)DAE s

= =07 (6] L+ ) 0 (€7] g + AE ) tas (2.34)

+ 0, (€ oy + A0 (€] 4Ly + A ) g

(We drop the subscript X = 0 from now on.) It can be written as the
classical part ¢,,(£) and the quantum part ¢, (A¢)

tuu(x) =t (&) + tuV(Ag) (2.35)
The classical part ¢, (§) is

tuw(§) = *%3“6“8&5% + 0,0, N (2.36)

The energy-momentum tensor of gravitational field itself in the general the-
ory of relativity is

1 /1
— (L, g _ RO
t = 5 ( SR RW> (2.37)

In the paper[l], we have proven that it is equivalent to the classical part of
energy-momentum tensor (2.36).



The quantum part t,, (A¢) is
s (A€) = = 29760 (ACP) + 0 (AE)DuE” + 9 (AE)O(AE”) mas

(2.38)
+ [0,6°0,(867) + 0,(AE)D° + 0,(AE)D (A as

It can be written as

tu(AE) = ) +13) (2.39)

where

th) = — 2 [0°¢20,(A") + 9 (AE")OnE” | s

+ |046°0,(A) + 0,(AE)0,6" | e (2.40)

#2) = I 5 (AE®) D (AEP Y ags + D (AE*)D, (A g

wv 2

The quantum part is the change in energy-momentum tensor caused by the
self-interaction of the gravitational field.

I1I.  SYMMETRY OF KLEIN-GORDON EQUATION

Due to the fact that the graviton £% satisfies the free field equation, and the
free field equation is a wave equation, then the field C*(z) can be expanded as
a linear superposition of the form:

C%(z) = C*(k) exp (ikz) + (C*(k))" exp ( — ik ) (3.1)
From this property, we can find a symmetry of the Klein-Gordon equation.

In the gravitational field with metric g,,, the Lagrangian density of real
scalar particle with spin 0 is

&L = g"0,90,® +m?¢? (3.2)

We can obtain the Klein-Gordon equation in the gravitational field as follows

1 0 , 00
T (Vg ) =0 3
It can be written as
2
w 079 1 99 10 1 9gu _18<I’_m2q)20 (3.4)

dxrox¥ 2g Oxr I G~ Inv g Inv

The inverse of the metric g, is

1 ’
9w = " alls (3.5)
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where [g*]w is the adjoint matrix of the metric g, .
Then Eq.(3.5) can be expressed as follows

2
070 (169_1 [ *])‘“ag”’“) —, 0P —m?® =0 (3.6)

oxroxv 2g Oxr g g Oxt ) THY Qxv

For the metric (2.9), using the mean value theorem of definite integrals, it
can be written as

Guv = l(cﬂ : /d4k C*(k) exp(ikz) — ¢ - /d4k (Ca(k))*exp(ikx)> .

. ({V . /d4k C*(k) exp(ikx) — ¢ - /d4k (Co‘(k))*exp(—ikx))l

where £k, is the function of mean value, ¢, and ¢ are the mean value of k.

For the form of metric (3.7), we have

1 9g 1
29 Ort g

* kﬂag/\ﬁ
lg*] " (3.8)

For the true metric g, Eq.(3.8) still holds true.
So that Eq.(3.6) can be written as
9%
loavatosing

g —m2® =0 (3.9)

Therefore the Klein-Gordon equation in the gravitational field be the usual
form as follows

(P —m*) =0 (3.10)
where (2 is the usual D’Alembertian operator in curved spacetime

62

|:|2: g
I rdar

(3.11)

Due to the local inertial coordinate, i.e. the graviton, satisfies the wave
equation, there is the symmetry of the Klein Gordon equation. It is a symmetry
that only holds true in quantum gravity theory.

[V. CONCLUSION

From the calculation in this paper, it can be seen that although the inverse
square law is correct, the true gravitational field does not follow the inverse
square law due to the self-interaction. It can be used to explain dark matter.
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